跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李駿華
Jun-hua Li
論文名稱: 無頻寬減損之微小化功率分配器與巴特勒矩陣
Miniaturized power divider and Butler matrix with no bandwidth reduction
指導教授: 林祐生
Yo-shen Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: 巴特勒矩陣功率分配器直交分合波器
外文關鍵詞: branch-line coupler, power divider, Butler matrix
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對功率分配器與巴特勒矩陣,以頻寬不減損為前提實現微小化之設
    計。傳統的功率分配器或直交分合波器等,均由多段λ/4傳輸線組成,面積都會受限於傳
    輸線長度,頻率越低面積越大。一般縮小傳輸線長度的方法大致有兩種:其一為使用彎
    折的方式,縮小幅度有限;其二為使用集總元件等效傳輸線,如傳統的T模型,但頻寬
    會因此縮減。本論文提出利用修正T模型取代傳統T模型,使頻寬在不減損的情況下達到
    縮小化的目的。在電路設計方面,使用平衡式電感與平行板電容的架構來實現,以利於
    積體電路製成實現。
    本研究以GaAs與Glass Integrated Passive Device (GIPD) 製程分別實現出中心頻率
    2.5 GHz的威爾京生分波器與直交分合波器,面積分別為0.020λg × 0.034λg與0.021λg ×
    0.022λg,遠小於傳統設計,而頻寬相對於理想電路並無減損。再利用直交分合波器與45
    度等效傳輸線,在GIPD製程上設計中心頻率2.5 GHz之4 × 4巴特勒矩陣,面積為0.044λg
    × 0.047λg,頻寬34%(反射損耗>10 dB);在GaAs製程上設計中心頻率5.5 GHz之二階功率
    分配器,面積為0.044λg × 0.078λg,頻寬129.1%(反射損耗 > 15 dB)。


    In this thesis, compact Wilkinson power divider and Butler matrix are designed with no
    bandwidth reduction. Traditional Wilkinson power divider and branch-line coupler are
    composed of many quarter-wavelength transmission-line sections at a designated frequency.
    However, at the lower frequencies of the microwave band, the sizes of conventional
    Wilkinson power divider and branch-line coupler are too large for practical use.
    Conventionally, there are two ways to reduce the size of transmission lines. The first one is
    achieved by using the folded line configuration, but the resultant circuit area is still large. The
    other is accomplished by adopting lumped-element components, such as using the T or π
    equivalent model, may be employed to reduce the circuit size, however these equivalent
    models are useful only in a narrow bandwidth around the center frequency. In order to expand
    the applicable frequency range of the equivalent circuit, this thesis adopts the modified-T
    model for the λ/4 lines, so that the very compact designs may be implemented with no
    bandwidth reduction. The proposed circuit designs are accomplished by adopting balance
    inductors and metal-insulator-metal (MIM) capacitors so these designs may be suitable for
    MMIC applications.
    This thesis presents a compact 2.5GHz Wilkinson power divider, which is fabricated by
    GaAs, shows the circuit size of 0.020λg × 0.034λg, and a compact 2.5GHz branch-line coupler,
    which is fabricated by Glass Integrated Passive Device (GIPD), shows the circuit size of
    0.021λg × 0.022λg. The circuit size is really small compared with traditional ways, and these
    deigns are no bandwidth reduction. In addition, a compact 2.5GHz 4 × 4 Butler matrix, which
    is fabricated by GIPD, is presented. The circuit size is 0.044λg × 0.047λg and the bandwidth is
    34% (|S11| > 10 dB). A compact two section Wilkinson power divider is also presented in
    GaAs process. The circuit size is 0.044λg × 0.078λg and the bandwidth is 129.1% (|S11| > 15
    dB).

    論文摘要 .................................................................................................................................... I Abstract ..................................................................................................................................... II 致謝 ......................................................................................................................................... III 目錄 ......................................................................................................................................... IV 圖目錄 ..................................................................................................................................... VI 表目錄 .................................................................................................................................. VIII 第一章 緒論 .............................................................................................................................. 1 1.1 研究動機 ..................................................................................................................... 1 1.2 文獻回顧 ..................................................................................................................... 2 1.3 章節介紹 ..................................................................................................................... 4 第二章 修正T 等效傳輸線原理與設計 .................................................................................. 5 2.1 修正T 模型 ................................................................................................................. 5 2.2 微小化傳輸線設計 ..................................................................................................... 8 2.2.1 電路架構與原理 .............................................................................................. 8 2.2.2 實作與量測驗證 ............................................................................................ 10 2.3 結論 ........................................................................................................................... 22 第三章 微小化威爾京生功率分配器 .................................................................................... 23 3.1 一階電路設計 ........................................................................................................... 23 3.1.1 電路架構與原理 ............................................................................................ 23 3.1.2 實作與量測驗證 ............................................................................................ 24 3.2 二階電路設計 ........................................................................................................... 29 3.2.1 電路架構與原理 ............................................................................................ 29 3.2.2 實作與量測驗證 ............................................................................................ 30 3.3 結論與文獻比較 ....................................................................................................... 35 第四章 微小化巴特勒矩陣 .................................................................................................... 36 4.1 直交分合波器 ........................................................................................................... 36 V 4.1.1 電路架構與原理 ............................................................................................ 36 4.1.2 實作與量測驗證 ............................................................................................ 37 4.1.3 結論與文獻比較 ............................................................................................ 44 4.2 巴特勒矩陣 ............................................................................................................... 45 4.2.1 電路架構與原理 ............................................................................................ 45 4.2.2 實作與量測驗證 ............................................................................................ 46 4.2.3 結論與文獻比較 ............................................................................................ 53 第五章 結論 ............................................................................................................................ 54 參考文獻 ................................................................................................................................. 56

    [1] T. S. Horng, J. M. Wu, L.Q. Yang and S. T. Fang, “A novel modified-T equivalent circuit
    for modeling LTCC embedded inductors with a large bandwidth,” IEEE MTT-S Int.
    Microwave Symp. Dig., 2003, pp.1015–1018.
    [2] 張盛富、戴明鳳,無線通信之射頻被動電路設計,全華科技圖書股份有限公司,民
    國八十七年。
    [3] J. Wilkinson, “An n-way hybrid power divider,” IEEE Trans. Microw. Theory Tech., vol.
    MTT-8, no. 1, pp. 116–118, Jan. 1960.
    [4] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005, ch. 7.
    [5] X. Tang and K. Mouthaan, “Analysis and design of compact two-way Wilkinson power
    dividers using coupled lines,” in Asia–Pacific Microw. Conf., Dec. 7–10, 2009, pp.
    1319–1322.
    [6] Y. Wu, Y. Liu and Q. Xue, “An analytical approach for a novel coupled-line dual-band
    Wilkinson power divider,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp.
    286–294, Feb. 2011.
    [7] S. Kim, S. Jeon and J. Jeong, “Compact two-way and four-way power dividers using
    multi-conductor coupled lines,” IEEE Microw. Wireless Compon. Lett.,, vol. 21, no. 3, pp.
    130 – 132, Mar. 2011.
    [8] M. M. Elsbury, P. D. Dresselhaus, N. F. Bergren, C. J. Burroughs, S. P. Benz and Z.
    Popovic, “Broadband lumped-element integrated N-way power dividers for voltage
    standards,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 2055–2063, Jan. 2009.
    [9] J. G. Kim and G. M. Rebeiz, “Miniature four-way and two-way 24 GHz Wilkinson power
    dividers in 0.13 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.
    658–660, Sep. 2007.
    57
    [10] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power
    dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no.
    1, pp. 6–8, Jan. 2002.
    [11] M. J. Chiang, H. S. Wu and C. K. Tzuang, “A Ka-band CMOS Wilkinson power divider
    using synthetic quasi-TEM transmission lines,” IEEE Microw. Wireless Compon. Lett.,
    vol. 17, no. 12, pp. 1531–1309, Dec. 2007.
    [12] S. S. Liao and J. T. Peng, “Compact planar microstrip branch-line couplers using the
    quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped
    structure,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3508–3514, Sep. 2006.
    [13] C. W. Wang, T. G. Ma, and C. F. Yang, “A new planar artificial transmission line and its
    applications to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55,
    pp. 2792–2801, Dec. 2007.
    [14] K. W. Eccleston and S. H. M. Ong, “Compact planar microstripline branch-line and
    rat-race coupler,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2119–2125, Oct. 2003
    [15] S. S. Liao, P. T. Sun, N. C. Chin and J. T. Peng, “A novel compact-size branch-line
    coupler ,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 588–590, Sep. 2005.
    [16] K. O. Sun, S. J. Ho, C. C. Yen and D. Weide, “A compact branch-line coupler using
    discontinuous microstrip lines” IEEE Microw. Wireless Compon. Lett., vol. 15, pp.
    519–520, Aug. 2005.
    [17] S. C. Jung, R. Negra, and F. M. Ghannouchi, “A design methodology for miniaturized
    3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area,”
    IEEE Trans. Microw. Theory Tech, vol. 56, pp. 2950-2953, Dec. 2008.
    [18] C. W. Tang, M. G. Chen, and C. H. Tsai, “Miniaturization of microstrip branch-line
    coupler with dual transmission lines ,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp.
    185-187, Mar. 2008.
    58
    [19] I. Haroun, J. Wight, C. Plett, A. Fathy and D. C. Chang, “Experimental analysis of a 60
    GHz compact EC-CPW branch-line coupler for mm-wave CMOS radios,” IEEE Microw.
    Wireless Compon. Lett., vol. 20 , no. 4, pp. 211–213, Apr. 2010.
    [20] C. H. Wu and H. H. Tseng, “A compact branch-line coupler using π-equivalent
    shunt-stub-based artificial transmission lines,” in Proc. Asia–Pacific Microw. Conf., pp.
    802–805, Dec. 2010.
    [21] J. Wang, B. Z. Wang, Y. X. Guo, L. C. Ong and S. Xiao, “A compact slow-wave
    microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Compon.
    Lett., vol. 17, pp. 501-503, Jul. 2007.
    [22] M. J. Chiang, H. S. Wu, M. L. Lee and C. K. C. Tzuang, “Design of compact Ka-band
    monolithic branch-line coupler on silicon substrate,” in Proc. Asia–Pacific Microw. Conf.,
    pp. 2124 – 2127, Jan 2009.
    [23] M. Bona, L. Manholm, J. P. Starski and B. Svensson, “Low-loss compact Butler matrix
    for a microstrip antenna,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp.
    2069–2075, Sep. 2002.
    [24] M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler matrix using CPW multilayer
    technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 499–507, Jan. 2006.
    [25] Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its
    application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 58,
    no. 4, Apr. 2010.
    [26] C. W. Wang, T. G. Ma and C. F. Yang, “A new planar artificial transmission line and its
    application to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55,
    no. 12, pp. 2792–2801, Dec. 2007.
    [27] G. Tudosie, H. Barth and R. Vahldieck, “A compact LTCC Butler matrix realization for
    phased array applications,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 441–444, Jun.
    2006.
    59
    [28] C. C. Chang, T. Y. Chin, J. C. Wu and S. F. Chang, “Novel design of a 2.5–GHz
    fully-integrated CMOS Butler matrix for smart-antenna systems,” IEEE Trans Microw.
    Theory Tech., vol. 56, no. 8, pp. 1757–1763, Aug. 2008.
    [29] Y. S. Lin, C. C. Liu, K. M. Li and C. H. Chen, “Design of an LTCC tri-band transceiver
    module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech, vol. 52, no.
    12, pp. 2718–2724, Dec. 2004.
    [30] T.-N. Kuo, Y.-S. Lin, C.-H. Wang and C. H. Chen, “A compact LTCC branch-line
    coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw.
    Wireless Compon. Lett., vol. 16, no.2, pp. 90–92, Feb. 2006.

    QR CODE
    :::