跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江承恩
Cheng-en Jiang
論文名稱: Mg2(Cu1-xNix)儲氫合金結構與吸放氫特性之研究
Structural and hydrogen storage characteristics ofMg2(Cu1-xNix) alloys
指導教授: 李勝隆
Sheng-Long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 59
中文關鍵詞: XRD固溶體晶格擴張侷限DSC儲氫合金Mg2(Cu1-xNix)合金
外文關鍵詞: hydrogen storage alloys, Mg2(Cu1-xNix) alloys, XRD, lattice
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用自行開發之恆溫揮發熔煉鑄造製程(Isothermal Evaporation Casting Process,IECP)製備高純度Mg2Cu儲氫合金,並於熔配過程中添加不同比例之Ni元素取代Cu元素進行合金改質,配製Mg2(Cu1-xNix)(X=0.2、0.4、0.6、0.8、1.0)儲氫合金,驗證IECP法於熔配過程添加第三元素之穩定度,並觀察不同Ni、Cu含量對於Mg-Cu-Ni三元儲氫合金系統之結構變化與吸放氫特性之影響。
    IECP法可成功製備高純度且均質之Mg2(Cu1-xNix)合金,且由X光繞射分析得知Mg2Cu合金為Face-Centered-Cubic結構,而Ni含量的添加(X為0.2以上),均轉變為與Mg2Ni相同之Hexagonal結構;同時合金之吸氫速率及飽和吸氫量亦隨著Ni添加量的增加而提升。Mg2(Cu1-xNix)(X=0.6、0.8)合金不同於其餘成分合金,其PCI曲線有雙平台區,且第一平台為Mg2Ni + 2H2 --> Mg2NiH4 之氫化反應,而第二平台則為2Mg2Cu + 3H2 --> 3MgH2 + MgCu2之氫化反應,然而受到固溶體晶格擴張侷限(Lattice Expansion Limitation of Additives effect)之影響使第一平台壓由300oC Mg2NiH4 之8 atm提升至15 atm以上,而第二平台壓亦由300oC MgH2 + MgCu2 之17 atm提升至25 atm,且由吸放氫前後之晶體結構變化,觀察於Mg基地之Cu元素與Ni元素其催化性質,發現Cu本身不參與氫化反應形成含Cu之氫化物,而且Cu本身會犧牲部分吸氫量。DSC曲線觀察到Mg2Cu合金之放氫溫度比純Mg放氫溫度約低20℃,表示Cu的添加能加速MgH2之放氫反應,而氫化後之Mg2(Cu1-xNix)(X=0.2、0.4、0.6、0.8)合金於放氫過程均有鑄態結構生成回復整理之吸熱反應。


    This research purpose lies in preparing high-purity Mg2Cu alloy
    by useful method Isothermal Evaporation Casting Process(IECP) and
    fabricating Mg2(Cu1-xNix)(X=0.2、0.4、0.6、0.8、1.0) hydrogen storage
    alloys by different ratio of nickel substituting for copper in Mg2Cu
    alloy. It is verify that controlling addition of the third element
    in melting process by IECP and the effect of nickel and copper content
    on the structure and hydrogen storage properties for the ternary
    Mg2(Cu1-xNix) alloys are investigated.
    It is successful to fabricate high-purity and homogeneous
    Mg2(Cu1-xNix) alloys .Mg2Cu alloy is face-centered orthorhombic
    structure and Mg2(Cu1-xNix) alloys in the composition range of
    1.0≧X≧0.2 are hexagonal structure. The absorption rate and
    capacity of the alloys increase with nickel content increasing. The
    PCI curves show two plateaus for the Mg2(Cu1-xNix)(X=0.6,0.8) alloys.It
    is found that the hydriding mechanism of the first plateau is Mg2Ni
    + 2H2 Mg2NiH4 and second plateau is 2Mg2Cu + 3H2 3MgH2 + MgCu2.
    However, lattice expansion limitation of additives effect makes that
    the first and second plateau pressure are raise to 15 atm from 4 atm and 25 atm from 17 atm, respectively. X-ray analysis indicate that
    the crystal structure are changed in hydriding process, and the
    catalytic character of nickel and copper element in the magnesium
    matrix are observed. We find out that copper isn’t concerned in
    hydriding reaction. Nevertheless, addition of copper makes hydrogen
    storage capacity reducing. From DSC curves, the dehydriding
    tempreature of Mg2Cu alloy is lower than pure magnesium about 20
    ℃ and it announces that addition of copper can accelerate the
    dehydriding reaction of magnesium. Besides, the endothermic reaction
    that as-cast structure are formed for the hydriding
    Mg2(Cu1-xNix)(X=0.2,0.4,0.6,0.8) alloys in dehydriding process are
    observed.

    總目錄 中文摘要....................................................i 英文摘要..................................................iii 謝 誌....................................................v 總 目 錄...................................................vi 圖 目 錄.................................................viii 表 目 錄....................................................x 一、前言與文獻回顧..........................................1 1.1 儲氫合金簡介..........................................1 1.2 儲氫合金吸放氫原理介紹 ...............................2 1.2.1 動力學性質........................................2 1.2.2 熱力學性質........................................4 1.3 儲氫合金種類介紹......................................8 1.4 Mg-Cu-Ni儲氫合金介紹..................................9 1.5 研究背景與目的.......................................11 二、實驗步驟與方法.........................................13 2.1 IECP法製備Mg2(Cu1-x Nix)合金流程 .......................14 2.2 感應耦合電漿質譜儀(Inductively coupled plasma-mass spectrometry)成分分析.................................14 2.3 X光繞射分析(X-ray diffraction methods,XRD) ...........15 2.3.1 X光粉末繞射分析(X-Ray Powder Diffraction,XRPD) .15 2.3.2 X光單晶繞射分析(Single-Crystal Diffractometer, X-RAY/CCD) .......................................15 2.4 合金儲放氫特性 ......................................16 2.4.1 吸氫速率(Rate of absorption)測試.................16 2.4.2 PCI曲線(Pressure-composition-isothermal curves, PCI)測試.........................................17 2.5 微差掃描熱分析(Differential scanning calorimetry,DSC ).17 三、結果與討論.............................................18 3.1 IECP 法製備Mg2(Cu1-x Nix)合金...........................18 3.1.1 Mg2(Cu1-x Nix)合金成分分析..........................18 3.1.2 Mg2(Cu1-x Nix)合金XRD分析 .........................19 3.2 儲放氫特性分析.......................................21 3.2.1 合金吸氫速率測試.................................21 3.2.2 合金PCI曲線量測..................................23 3.3合金吸氫過程之結構分析 ...............................26 3.4 固溶體氫化擴張侷限(Lattice expansion limitation affected by additives)...............................31 3.4.1 Mg2Cu固溶體氫化擴張侷限..........................32 3.4.2 Mg2(Cu0.4Ni0.6)與Mg2(Cu0.2Ni0.8)固溶體氫化擴張侷限 .....33 3.5 合金放氫熱行為.......................................36 3.5.1 低溫區(200℃~320℃)合金放氫熱行為................36 3.5.2 高溫區(320℃~460℃)合金放氫熱行為................37 四、結論...................................................42 五、未來研究方向...........................................44 六、參考文獻...............................................45

    [1]T. Graham, “On the Relation of Hydrogen to Palladium”, J. Franklin Inst., Vol.87, 1869, pp.256-266.
    [2]廖世傑,“儲氫技術及應用簡介”, 工業材料, Vol.190, 2002, p.139.
    [3]J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res. Repts., Vol.25, 1970, p.133.
    [4]J.J. Reilly, R.H. Wiswall, “The reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry, Vol.7, 1968, p.2254.
    [5]J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium Hydride”, Inorganic Chemistry, Vol.13, 1974, p.218.
    [6]Kuochih Hong, “The development of hydrogen storage electrode alloys for nickel hydride batteries”, Journal of power sources, Vol.96, 2001, pp.85-89.
    [7]A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, “LiBH4 a new hydrogen storage Material”, Journal of Power Sources, Vol.118, 2003, pp.1-7
    [8]Elena David, “An overview of advanced materials for hydrogen storage”, Journal of Materials Processing Technology, Vol.162-163, 2005, pp.169-177.
    [9]Anaba Anani, Arnaldo Visintin, Konstantin Petrov, Supramaniam Srinivasant, “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, Journal of Power Sources, Vol.47, 1994, pp.261-275.
    [10]Gary Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction
    point of view”, Journal of Alloys and Compounds, Vol.293-295, 1999, pp.877–888.
    [11]K. Aoki, M. Kamachi, T. Masumoto, “Thermodynamics of Hydrogen Absorption in Amorphous Zr-Ni Alloys”, Journal of Non-Crystalline Solids, Vol.61-62, 1984, p.679.
    [12]V.K. Sinha, W.E. Wallace,“The Hyperstoichiometric ZrMn1+xFe1+y−H2 System II:Hysteresis Effect”, Journal of the Less-Common Metals, Vol.91, 1983, p.239.
    [13]A. Zuttel, “Materials for hydrogen storage”, Materials Today, Vol. 6, 2003, pp.24-33.
    [14]胡子龍, “儲氫材料”, 化學工業出版社, 2002, p.51.
    [15]B. A. Kolachev, A. A. Ilyin, “The structural outlines of hydrogen storage alloys”, International Journal of Hydrogen Energy, Vol.21, 1996, pp.975-980.
    [16]A. Seiler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel F. Stucki” Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu” Journal of the Less-Common Metals, Vol.73, 1980, pp.193-199.
    [17]C.R. Clark, C. Wright, C. Suryanarayana, E.G. Baburaj, F.H. Froes, “Synthesis of Mg2X (X = Si, Ge, or Sn) intermetallics by mechanical alloying”, Materials Letters, Vol.33, 1997, pp.71-75.
    [18]G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm(Tm = Ti, V, Mn, Fe and Ni) systems”, Journal of Alloys and Compounds, Vol.292, 1999, pp.247–252.
    [19]Hao Gu, Yunfeng Zhu, Liquan Li, “Characterization of hydrogen storage properties of Mg-30 wt.% Ti1.0V1.1Mn0.9 composite”, Journal of Alloys and Compounds, 2006, article in press.
    [20]Yongfeng Liu, Zhitao Xiong, Jianjiang Hu, Guotao Wu, Ping Chen, Kenji Murata, Ko Sakata, ”Hydrogen absorption/desorption behaviors over a quaternary Mg–Ca–Li–N–H system, Journal of Power Sources, 2006, article in press.
    [21]Toyoto Sato, Helen Blomqvist, Dag Noreus, “Attempts to improve Mg2Ni hydrogen storage by aluminium addition”, Journal of Alloys and Compounds, Vol.356–357, 2003, pp.494–496.
    [22]Y. Tsushioa, H. Enokib, E. Akibab, “Energy distribution of hydrogen sites for MgNi0.86M10.03(M1=Cr,Fe,Co,Mn)alloys desorbing hydrogen at low temperature”, Journal of Alloys and Compounds, Vol.285, 1999, pp.298–301.
    [23]J.J. Reilly, R.H. Wiswall, “The reaction of hydrogen with alloys of magnesium and copper”, Inorganic Chemistry, Vol.7, 1967, pp.2220-2223.
    [24]Huaiyu Shao, Yuntao Wang, Hairuo Xu, Xingguo Li, “Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy, Journal of Solid State Chemistry, Vol.178, 2005, pp.2211–2217.
    [25]M. Jurczyk , I. Okonska, W. Iwasieczko, E. Jankowska, H. Drulis, “Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials”, Journal of Alloys and Compounds, 2006, article in press.
    [26]K. Ikeda1, S. Orimo, A. Zuttel, L. Schlapbach, H. Fujii, “Cobalt- and copper-substitution effects on thermal stabilities and Hydriding properties of amorphous MgNi, Journal of Alloys and Compounds, Vol.280, 1998, pp.279–283.
    [27]Liquan Li, Itoko Saita, Katsushi Saito, Tomohiro Akiyama, “Hydridin combustion synthesis of hydrogen storage alloys of Mg–Ni–Cu system”, Intermetallics, Vol.10, 2002, pp.927–932.
    [28]J. P. Darnaudery, M. Pezat, B. Darri , “Influence de la substitution du cuivre au nickel dans Mg2Ni sur le stockage de L’hydrogene, Journal of the Less- Common Metals, Vol.92, 1983, pp.199-205.
    [29]P. Selvam, B. Viswanathan, C. S. Swamy, V. Srinivasan, “Studies of the thermal characteristics of hydrogen of Mg, Mg2Ni, Mg2Cu and Mg2Ni1-xMx (M = Fe, Co, Cu or Zn;0 < x < 1)”, International Journal of Hydrogen Energy, Vol.13, 1988, pp.87-94.
    [30]G. Liang, S. Boily, J. Huot, Van Neste, R.Schulz, “Hydrogen storage properties of nanocrystalline Mg2NixCu1-x synthesized by mechanical alloying”, Materials Science Forum, Vol.269-272, 1998, pp.1049-1053.
    [31]P. Palade, S. Sartori, A. Maddalena, G. Principi, S. Lo Russo, M. Lazarescu, G. Schinteie, V. Kuncser, G. Filoti, “Hydrogen storage in Mg–Ni–Fe compounds prepared by melt spinning and ball milling”, Journal of Alloys and Compounds, Vol.415, 2006, pp.170–176.
    [32]L.Li, “Production of hydrogen storage alloy of Mg2NiH4 by hydriding Combustion synthesis in laboratory scale”, Journal of materials Synthesis and processing, Vol.8, 2000, pp.7-14.

    QR CODE
    :::