| 研究生: |
郭秉軒 Ping-Hsuan Kuo |
|---|---|
| 論文名稱: |
電解質添加劑及其濃度於水系KOH電解質中對鋅二次電池陽極電化學性質的影響 Effects of various additives and their concentrations in aqueous KOH electrolyte on electrochemical performance of Zn electrodes for rechargeable batteries |
| 指導教授: |
張仍奎
Jeng-Kuei Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 枝晶狀結構 、循環效率 、添加劑 、鋅腐蝕 、鹼性溶液 |
| 外文關鍵詞: | Dendrite formation, Current efficiency, additives, Zn corrosion, Alkaline solution |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究從鋅空氣電池電解質的觀點切入,目的為解決鋅陽極在充放電過程中形成枝晶狀結構、在鹼性水溶液中易腐蝕等問題並提高循環效率。尋找合適的鋅來源及濃度,在含有0.3 M氧化鋅之6 M氫氧化鉀溶液中,加入不同種類添加劑並改變濃度,針對最佳參數條件做複合的動作。
有機酸類添加劑中檸檬酸提高庫倫效率5.7 %,經過循環充放電後,表面型態方面鋅晶粒無明顯枝晶狀結構出現,添加較有助於細化電極表面生成的鋅晶粒,抑制形成枝晶狀結構。腐蝕測試方面,腐蝕電流下降157 μA/cm2 (約31.5 %) 相較無添加劑時,改變濃度參數後我們在750 ppm得到與3000 ppm近似庫倫效率值同時腐蝕電流值下降280 μA/cm2 (約56.2 %)為最適當濃度值。
胺鹽類及其衍生物添加劑中,1-甲基哌嗪可使庫倫效率上升到80 %左右相較無添加劑時,腐蝕電流值下降102 μA/cm2 (約20.5 %),當降低濃度至750 ppm對腐蝕電流值降低230 μA/cm2 (約46.2%)為最多,效果最為顯著。聚乙烯亞胺在腐蝕抑制及修飾枝晶狀結構最為明顯,腐蝕電流值下降330 μA/cm2 (約66.4 %)最多,並隨著濃度的降低在50 ppm時我們能達到與無添加劑時相近庫倫效率值,並在腐蝕抑制及修飾枝晶狀結構依舊有良好的效果,腐蝕電流值下降380 μA/cm2 (約76.3 %)最多。最後依照不同類添加劑及濃度去做複合觀察是否有加乘效應。
複合以上不同種類及濃度添加劑後,研究最佳組合為3000 ppm 1-甲基哌嗪與750 ppm檸檬酸,庫倫效率值能達到82 %同時氧化還原電荷量不損失,循環充放電後枝晶狀結構有效改善,腐蝕電流值下降46 %相較無添加劑時,複合後性質較個別單一添加劑好為最佳組合配方。
From the viewpoint of electrolytes design, we aim at solving the zinc dendrites formation, facile corrosion and low coulombic efficiency during charge/discharge process in an alkaline aqueous solution. In 0.3 M ZnO/6 M KOH solution, the effects of electrolyte additives species and concentration on the aforementioned problems are investigated in this study.
Our experimental results shows the addition of 3000 ppm citric acid helps promote the deposition/stripping coulombic efficiency by 5.7 %. After cyclic charge/discharge, the obtained dendrite-free morphology indicates that the additive inhibits the dendrites formation and refines zinc grains. Besides, the Tafel analyses shows a decrease of 157 μA/cm2 (~31.5 %) in corrosion current as compared to that without additive. By tuning the additive concentration to 750 ppm, a maximum decrease of 280 μA/cm2 (~56.2 %) is achieved without trading off against other properties.
Among amine-based additives, the addition of 3000 ppm 1-methylpiperazine can promote coulombic efficiency to ~80% and decrease the corrosion current by 102 μA/cm2 (~20.5 %) as compared to that without additive. Reducing the concentration to 750 ppm also causes a more significant decrease by 230 μA/cm2 (~46.2 %). Polyethylenimine (PEI) additive demonstrates the best effect on inhibiting corrosion behavior and dendrite formation. While the concentration decreases from 3000 ppm to 50 ppm, the decrease amount of corrosion current is enhanced from 330 μA/cm2 (~66.4 %) to 380 μA/cm2 (~76.3 %).
At last, the synergistic effects of the effective additives combination are discussed. After combing different additives and tuning their concentrations, we explore that the addition of 3000 ppm 1-methylpiperazine and 750 ppm citric acid can raise the coulombic efficiency to 82 % (without losing redox charge) and still retain the dendrite-free morphology. Moreover, the corrosion current decreases by 46 %, which shows a synergistic effect on suppressing zinc corrosion.
1. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334 (2011) 928-935.
2. Rahman, M.A., X. Wang, and C. Wen, High Energy Density Metal-Air Batteries: A Review. Journal of the Electrochemical Society, 160 (2013) A1759-A1771.
3. Chakkaravarthy, C., A.K.A. Waheed, and H.V.K. Udupa, ZINC-AIR ALKALINE BATTERIES - A REVIEW. Journal of Power Sources, 6 (1981) 203-228.
4. Li, Y.a.H.D., Recent advances in zinc-air batteries. Chem Soc Rev, 43 (2014) 5257-5275.
5. D. Linden, R.T., Handbook of Batteries 3rd Edition. McGraw-Hill: New York (2008).
6. D. Linden, T.B.R., Handbooks of Batteries. (2001).
7. Armand, M.a.J.M.T., Building better batteries. Nature, 451 (2008) 652-657.
8. Lee, J.-S., et al., Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 1 (2011) 34-50.
9. G. Toussaint, P.S., L. Akrour, R. Rouget and and F. Fourgeot, ECS Trans, 28 (2010) 25.
10. Cheng, F.a.J.C., Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 41 (2012) 2172-2192.
11. Cao, R., et al., Recent Progress in Non-Precious Catalysts for Metal-Air Batteries. Advanced Energy Materials, 2 (2012) 816-829.
12. Kim, H., et al., Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 42 (2013) 9011-9034.
13. Wang, Z.L., et al, Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 43 (2014) 7746-7786.
14. Sapkota, P.a.H.K., Zinc-air fuel cell, a potential candidate for alternative energy. Journal of Industrial and Engineering Chemistry, 15 (2009) 445-450.
15. Gilliam, R., et al., A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. International Journal of Hydrogen Energy, 32 (2007) 359-364.
16. Paul Delahay, M.P., and Pierre Van Rysselberghe, Potential-pH Diagram of Zinc and Its Applications to the Study of Zinc Corrosion. J. Electrochem. Soc. 98 (1951) 101-105.
17. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. (1974).
18. XG, Z., Secondary batteries–zinc systems. Zinc electrodes: overview. In Encyclopedia of Electrochemical Power Sources, (2009) 454–468.
19. Kim, K., et al., Anions of organic acids as gas suppressants in zinc-air batteries. Materials Research Bulletin, 45 (2010) 262-264.
20. Yang, C.C.a.S.J.L., Improvement of high-rate capability of alkaline Zn-MnO2 battery. Journal of Power Sources, 112 (2002) 174-183.
21. Cheng, H.-H.a.C.-S.T., Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. Journal of Power Sources, 162 (2006) 1431-1436.
22. Shaigan, N.Q., W.; Takeda, T., Morphology Control of Electrodeposited Zinc from Alkaline Zincate Solutions for Rechargeable Zinc Air Batteries. ECS Transactions, 28 (2010). 35-44.
23. Qing Hua Tian, L.Z.C., Jing Xin Liu, Xue Yi Guo, Manufacturing of Zinc Powder with Dendritic Microstructure for Zinc-Air Battery by Electrodeposition. Advanced Materials Research, 460 (2012) 300-303.
24. Xu, M., et al., Zn/Zn(II) Redox Kinetics and Zn Deposit Morphology in Water Added Ionic Liquids with Bis(trifluoromethanesulfonyl)imide Anions. Journal of the Electrochemical Society, 161 (2013) A128-A136.
25. Liu, Z., S.Z. El Abedin, and F. Endres, Dissolution of zinc oxide in a protic ionic liquid with the 1-methylimidazolium cation and electrodeposition of zinc from ZnO/ionic liquid and ZnO/ionic liquid–water mixtures. Electrochemistry Communications, 58 (2015) 46-50.
26. Shapouri Ghazvini, M., et al., Electrodeposition and stripping behavior of a zinc/polystyrene composite electrode in an ionic liquid. Journal of Solid State Electrochemistry, 19 (2015) 1453-1461.
27. Xu, M., Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement. Journal of Power Sources, 283 (2015) 358-371.
28. Ibrahim, S., Effect of additives and current mode on zinc electrodeposition from deep eutectic ionic liquids. Electrochimica Acta, 191 (2016) 724-732.
29. Kar, M., et al., Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes. Electrochimica Acta, 188 (2016) 461-471.
30. R. Mainar, A., et al., Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. International Journal of Energy Research, 40 (2016) 1032-1049.
31. Wang, R.Y., D.W. Kirk, and G.X. Zhang, Effects of Deposition Conditions on the Morphology of Zinc Deposits from Alkaline Zincate Solutions. Journal of The Electrochemical Society, 153 (2006) C357.
32. Aleksandra Gavrilović-Wohlmuther, A.L., Christian Zelger, Bernhard Gollas, and Adam Harding Whitehead, Effects of Electrolyte Concentration, Temperature, Flow Velocity and Current Density on Zn Deposit Morphology. Journal of Energy and Power Engineering, (2015) 1019-1028.
33. Lee, C.W., et al., Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. Journal of Power Sources, 159 (2006) 1474-1477.
34. Shanmugasigamani and M. Pushpavanam, Role of additives in bright zinc deposition from cyanide free alkaline baths. Journal of Applied Electrochemistry, 36 (2005) 315-322.
35. Pereira, M.S., The influence of sorbitol on zinc film deposition, zinc dissolution process and morphology of deposits obtained from alkaline bath. Journal of Applied Electrochemistry, 36 (2006) 727-732.
36. Ghavami, R.K., Z. Rafiei, and S.M. Tabatabaei, Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries. Journal of Power Sources, 164 (2007) 934-946.
37. Morón, L.E., Zn Electrodeposition from an Acidic Chloride Bath Containing Polyethyleneglycol (Mw 200) and Benzylideneacetone as Additives. Journal of The Electrochemical Society, 158 (2011) D435.
38. Punith Kumar, M.K. and C. Srivastava, Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives. Journal of Materials Engineering and Performance, 23 (2014) 3418-3424.
39. Deyab, M.A., Hydroxyethyl cellulose as efficient organic inhibitor of zinc–carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies. Journal of Power Sources, 280 (2015) 190-194.
40. Deyab, M.A., Application of nonionic surfactant as a corrosion inhibitor for zinc in alkaline battery solution. Journal of Power Sources, 292 (2015) 66-71.
41. Kim, H.-I. and H.-C. Shin, SnO additive for dendritic growth suppression of electrolytic zinc. Journal of Alloys and Compounds, 645 (2015) 7-10.
42. Li, Q., Insight into the Role and Its Mechanism of Polyacrylamide as an Additive in Sulfate Electrolytes for Nanocrystalline Zinc Electrodeposition. Journal of The Electrochemical Society, 163 (2016) D127-D132.
43. C.J. Lan, C.Y.L., T.S. Chin, Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochimica Acta, 52 (2007) 5407–5416.
44. Shanmugasigamani, M.P., Role of additives in bright zinc deposition from cyanide free alkaline baths. Journal of Applied Electrochemistry, 36 (2006) 315-322.
45. Chainet, Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J Appl Electrochem, 43 (2013) 289-300.
46. Chainet, Electrodeposition of zinc in the presence of quaternary ammonium compounds from alkaline chloride bath. J Appl Electrochem, 45 (2015) 67-78.
47. Stephen J. Banik, R.A., Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive. Electrochimica Acta, 179 (2014) 475-481.
48. Hsieh, J.-C., C.-C. Hu, and T.-C. Lee, The Synergistic Effects of Additives on Improving the Electroplating of Zinc under High Current Densities. Journal of The Electrochemical Society, 155 (2008) D675.
49. Li, Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries. J Appl Electrochem, 41 (2011) 991-997.
50. Xiaoping Li, M.L., Hebing Zhou, Qiming Huang,, Dongsheng Lv, and Weishan Li, Composite of Indium and Polysorbate 20 as Inhibitor for Zinc Corrosion in Alkaline Solution. Bull. Korean Chem. Soc., 33 (2012) 1566-1570.