| 研究生: |
林錫聰 Shi-Tsung Lin |
|---|---|
| 論文名稱: |
以天然多醣體製備氧化鋅及其光催化效能之研究 Synthesis of ZnO using various polysaccharides as precursors and evaluation of photocatalytic activity |
| 指導教授: |
李俊福
Jiunn-Fwu Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 氧化鋅 、光催化 、光觸媒 、海藻酸鈉 、幾丁聚醣 、玉米澱粉 |
| 外文關鍵詞: | Znic oxide, photocatalysis, photocatalyst, sodium alginate, chitosan, corn starch |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光催化技術可有效應用於廢水處理;於光觸媒中,又以二氧化鈦(TiO2)最具光催化效能;然而氧化鋅(ZnO)具備價格便宜、可吸收可見光範圍大、對特定染劑光催化效果佳等眾多優點,因此有其潛力取代傳統TiO2光觸媒。對於氧化鋅光觸媒之合成技術一般包含氣相冷凝法、物理粉碎法、沉積法、沉澱法、水熱合成法、溶膠凝膠法及微乳液法。本研究利用不同天然多醣進行改質以製備奈米氧化鋅,其具成本低、低污染、廢棄物再利用及製備容易等優點。因海藻酸鈉、幾丁聚醣、玉米澱粉及纖維素於自然界中含量豐富,故被選擇為製備ZnO之前驅物。
本研究利用上述四種天然多醣體於不同製備條件探討ZnO之製備及其表面理化特性,並進一步測試其對甲烯藍、結晶紫與剛果紅等三種染劑的吸附作用及光催化反應。由XRD結果顯示四種天然多醣體所合成光觸媒皆為ZnO結構,且隨鍛燒溫度增加,光觸媒於XRD有較強散射波峰。另外;由SEM圖及BET分析結果顯示光觸媒ZnO於較高鍛燒溫度條件會產生燒結現象,導致比表面積下降。光觸媒於三種染劑(甲烯藍、結晶紫及剛果紅)催化結果顯示利用玉米澱粉與海藻酸鈉製備ZnO對三種染劑催化降解效率相當,特別於結晶紫催化,兩者觸媒於第3小時即可完全降解結晶紫;反之,幾丁聚醣合成氧化鋅對染劑催化降解效果最差。儘管不同製備條件影響ZnO光觸媒對染劑催化性能,本研究亦發現溫度、染劑濃度、觸媒含量及pH值皆會影響氧化鋅的催化性能。大致而言,本研究利用改質多醣體可成功合成ZnO且應用於廢水處理。
Photocatalytic technology is considered as one effective way for wastewater treatment. Among various photocatalysts, TiO2 is most effective catalyst for wastewater treatment. Nevertheless, ZnO has potential to substitute traditional TiO2 due to low cost, large visible light range, and good photocatalytic performance. Generally, synthetic methods for ZnO preparation include vapor condensation, physical crushing, deposition, precipitation, hydrothermal synthesis, sol-gel and microemulsion.
This study attempted to use natural polysaccharides, such as sodium alginate, chitosan, corn starch and cellulose as precursors for ZnO preparation with various conditions. Various ZnO prepared were characterized by XRD, SEM, BET and TGA, respectively. Further performances of ZnO prepared were evaluated for the removal of various pollutants including methylene blue, crystal violet and congo red. The XRD results indicated that ZnO prepared by 4 polysaccharides as precursors mainly present diffraction peaks of ZnO. It was also observed that diffraction peaks of ZnO enhance with increasing calcination temperature. In addition, SEM and BET results indicated that ZnO would present sintering as photocatalyst was calcined with a higher temperature, resulting in lower BET specific surface area. Further lower BET specific surface area may influence performance of photocatalyst. For photocatalytic test, the results indicated that ZnO prepared by sodium alginate and corn starch revealed good photocatalytic activity for removal of various pollutants. Especially, removal efficiency of crystal violet achieved with ZnO prepared by sodium alginate and corn starch could 100% after 3hr. On the contrary, ZnO prepared by chitosan revealed the lowest activity for removal of various pollutants. In addition, various preparation processes for ZnO synthesis significantly influence their characteristics and catalytic performances. Also, various operating conditions influence catalytic performance for removals of methylene blue, crystal violet and congo red. Overall, ZnO developed by this study revealed good activity and potential for wastewater treatment.
參考文獻
Abdel-Khalek A.A., Mahmoud S.A., Zaki A.H., “Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite”, Environmental Nanotechnology, Monitoring & Management 9, 164-173 (2018).
Abu-Saied M.A., Wycisk R., Abbassy M.M., El-Naim G.A., El-Demerdash F., Youssef M.E., Bassuony H., Pintauro P.N., “Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions-Fabrication and sorption studies”, Carbohydrate Polymers, 165, 149-158 (2017).
Akyol A., Yatmaz H.C., Bayramoglu M., “Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions”, Applied Catalysis B: Environmental, 54, 19-24 (2004).
Aliabadi M., Irani M., Ismaeili J., Piri H., Parnian M.J., “Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution,” Chemical Engineering Journal, 220, 237-243 (2013).
Baruah S., Dutta J., “Hydrothermal growth of ZnO nanostructures”, Science and Technology of Advanced Materials, 10, 18 (2009).
Bhandari N., Bahl R., Taneja S., Strand T., Mølbak K., Ulvik R.J., Sommerfelt H., Bhan M.K., “Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: randomised controlled trial in an urban slum”, British Medical Journal, 8, 1358 (2002).
Brunauer S., Emmet P.H., Teller, E., “Adsorption of gas in multimolecular lays”, Journal of the American Chemical Society, 60, 309-319 (1938).
Çavuş S., Gürdağ G., Yaşar M., Güçlü K., Gürkaynak M.A., “The competitive heavy metal removal by hydroxyethyl cellulose-g-poly (acrylic acid) copolymer and its sodium salt: the effect of copper content on the adsorption capacity”, Polymer Bulletin, 57, 445-456 (2006).
Chan W.C, Wu, J.Y., “Dynamic adsorption behaviors between Cu2+ ion and water‐insoluble amphoteric starch in aqueous solutions”, Journal of Applied Polymer Science, 81, 2849-2855 (2001).
Chen M., Bao C., Cun T., Huang Q., “One-pot synthesis of ZnO/oligoaniline nanocomposites with improved removal of organic dyes in water: Effect of adsorption on photocatalytic degradation”, Materials Research Bulletin, 95, 459-467 (2017).
Chen Y.X., and Wang G.Y., “Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion”, Colloids and Surfaces A-PhysicochemIical and Engineering Aspects, 289, 75-83 (2006).
Fakhre N.A., Ibrahim B.M., “The use of new chemically modified cellulose for heavy metal ion adsorption”, Journal of Hazardous Materials, 343, 324-331 (2018).
Fatimah I., Wang S., Wulandari D., “ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue”, Applied Clay Science, 53, 553-560 (2011).
Freundlich H., “Kolloidfällung und Adsorption”, Angewandte Chemie, 20, 749-750 1907.
Fujishima A., Hashimoto K., Watanabe T., “TiO2 Photocatalysis, fundamentals and applications”, BKC Inc., 1999.
Fujishima A., Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37-37 (1972).
Fujishima A., Rao T.N., Tryk D.A., “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000).
Gratzel M., Energy Resources through Photochemistry and Catalysis, Acadmic Press Inc., 1983.
Gregg S.J., Sing K.S.W., “Adsorption Surface Area and Porosity”, 2nd ed., Academic Press, London, 1982.
Gao X., Liu X., Zhu Z., Gao Y., Wan Q., Zhu F., Xie Z., “Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks”, Scientific Reports, 7, 973 (2017).
Guibal E., “Interactions of metal ions with chitosan-based sorbents: a review”, Separation and Purification Technology, 38, 43-74 (2004).
Gupta A., Gaur V., Verma,N., “Breakthrough analysis for adsorption of sulfur-dioxide over zeolites”, Chemical Engineering and Processing, 43, 9-22 (2004).
Hirano S., and Nagao N., “Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens”, Agricultural and Biological Chemistry, 53, 3065-3066 (1989).
Hizukuri S., “Polymodal distribution of the chain lengths of amylopectins, and its significance”, Carbohydrate Research, 147, 342-347 (1986).
Hizukuri S., Kozuma T., Yoshida H., Abe J., Takahashi K., Yamamoto M., Nakamura N., “Properties of Flavobacterium odoratum KU Isoamylase”, Starch, 4, 295-300 (1996).
Hossain M.M., Ku B.-C., Hahn J.R., “Synthesis of an efficient white-light photocatalyst composite of graphene and ZnO nanoparticles: Application to methylene blue dye decomposition”, Applied Surface Science, 354, 55-65 (2015).
Horikoshi S., Matsubara A., Takayama S., Sato M., Sakai F., Kajitani M., Abe M., Serpone N., Applied Catalysis B: Environmental, 91, 362-367 (2009).
Huang C.P., Dong C., Tang Z., “Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment,” Waste Management., 13, 361-377 (1993).
Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., “Room-temperature ultraviolet nanowire nanolasers”, Science, 292, 1897 -1899 (2001).
Hunge Y.M., Yadav A.A., Mathe V.L., “Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation”, Ultrasonics Sonochemistry, 45, 116-122 (2018).
Hwang D., Kim B., Baik M., “Physicochemical properties of non‐thermally cross‐linked corn starch with phosphorus oxychloride using ultra high pressure (UHP). Starch, 61, 438-447 (2009).
Ibrahim A.A., Adel A.M., El–Wahab Z.H., Al–Shemy M.T., “Utilization of carboxymethyl cellulose based on bean hulls as chelating agent. Synthesis, characterization and biological activity”, Carbohydrate Polymers, 83, 94-115 (2011).
Ichiura H., Nozaki M., Kitaoka T., Tanaka H., “Influence of uniformly of zeolite sheets prepared using a papermaking technique on VOC adsorptivity”, Advances in Environmental Research, 7, 975-979 (2003).
Jorfi S, Barkhordari M.J., Ahmadi M, Jaafarzadeh N., Moustofi A., Ramavandid B., “Photodegradation of Acid red 18 dye by BiOI/ZnO nanocomposite: A dataset”, Data in Brief, 16, 608-611 (2018).
Karunakaran C., and Senthilvelan S., “Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline“, Electrochemistry Communications, 8, 95-101 (2006).
Keller J.U., and Staudt, R., Gas Adsorption Equilibria, Springer, U.SA, 2005.
Khalil M.I. and Abdel-Halim M.G., “Preparation of anionic starch containing carboxyl groups and its utilization as chelating agent”, Starch, 53, 35-41( 2001).
Khodja A.A., Sehili T., Pilichowski J.F., Boule P., Journal of Photochemistry and Photobiology A: Chemistry, 141, 231-239 (2001).
Kim B.S., Lim S-T., “Removal of heavy metal ions from water by cross-linked carboxymethyl corn starch”, Carbohydrate Polymers, 39, 217-223 (1999).
Kim S.P., Choi M.Y., Choi H.C., “Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation”, Materials Research Bulletin 74, 85-89 (2016).
Kirk R.E., Othmer D.F., “Cellulose, encyclopedia of chemical technology”, New York: John Wiley and Sons, 4 ,593-683 (1967).
Kong X., Xu, W., Zhang C., Kong W., “Chitosan temperature‑sensitive gel loaded with drug microspheres has excellent effectiveness, biocompatibility and safety as an ophthalmic drug delivery system”, Experimental and Therapeutic Medicine, 15, 1442-1448 ( 2018).
Lee G.J., and Wu J.J., “Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications- A review”, Powder Technology, 318, 8-22 (2017).
Leprince-Wang Y, Yacoubi-Ouslim A., Wang G.Y., “Structure study of electrodeposited ZnO nanowires”, Microelectronics Journal, 36, 625- 628 (2005).
Leyva E., Montalvo C., Moctezuma E., Leyva S., “Photocatalytic degradation of pyridine in water solution using ZnO as an alternative catalyst to TiO2”, Journal of Ceramic Processing Research, 9, 455-462 (2008).
Li X.C., He G.H., Xiao G.K., Liu H.J., Wang M., “Synthesis and morphology control of ZnO nanostructures in microemulsions”, Journal of Colloid and Interface Science, 333, 465-473 (2009).
Lin S.T., Thirumavalavan M., Jiang T.Y., Lee J.F., “Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes”, Carbohydrate Polymers, 105, 1-9 (2014).
Lin Barltrop J.A., and Coyle J.D., “Principles of photochemistry”, Chichester, New York, 1978.
Linsebigler Lu G., A.L., Yates J.T., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and celected results”, Chemical Reviews, 95, 735-758 (1995).
Lower, S. E., Polymers from the sea chitin and chitosan I. Manufacturing Chemist, 55 ,73-75 (1984).
Lu J., and Ng K.M., “Efficient, One-Step Mechanochemical Process for the Synthesis of ZnO Nanoparticles”, Industrial & Engineering Chemistry Research, 47, 1095-1101, (2008).
Ma X., Liu X., Anderson D.P., Chang P.R., “Modification of porous starch for the adsorption of heavy metal ions from aqueous solution”, Food Chemistry, 181, 133-139 (2015).
Massicotte L.P., Baille W.E., Mateescu M.A., “Carboxylated high amylose starch as pharmaceutical excipients Structural insights and formulation of pancreatic enzymes”, International Journal of Pharmaceutics, 356, 212-223 (2008).
Monier M., Ayad D.M., Wei Y., Sarhan A.A., “Immobilization of horseradish peroxidase on modified chitosan beads”, International Journal of Biological Macromolecules, 46, 324-30 (2010).
Mourya V.K., and Inamdar N.N, “Chitosan-modifications and applications: Opportunities galore”, Reactive & Functional Polymers, 68, 1013-1051 (2008).
Nakata K, and Fujishima A, “TiO2 photocatalysis: Design and applications”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189 (2012).
Navarro R.R., Sumi K., Matsumura M., “Improved metal affinity of chelating adsorbents through graft polymerization”, Water Research, 33, 2037-2044 (1999).
Norkus E., Vaičiūnien J., Vuorinen T., Macalady D.L., “Equilibria of Cu(II) in alkaline suspensions of cellulose pulp”, Carbohydrate Polymers, 55, 47-55 (2004).
O’Connell D.W., Birkinshaw C., O’Dwyer T.F., “A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions”, Journal of Chemical Technology & Biotechnology, 81, 1820-1828 (2006a).
O’Connell D.W., Birkinshaw C., O’Dwyer T.F., “Removal of lead(II) from aqueous solution using a modified cellulose adsorbent”, Environmental Science & Technology, 24, 337-347 (2006b).
O’Connell D.W., Birkinshaw C., O’Dwyer T.F., “A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solution”, Journal of Applied Polymer Science, 99, 2888-2897 (2006c).
Qin J., Zhang X., Yang C., Cao M., Ma M., Liu R., “ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye”, Applied Surface Science, 392, 196-203 (2017).
Palominos R.A., Mondaca M.A., Giraldo A., Penuela G., Perez-Moya M., Mansilla HD., “Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions”, Catalysis Today, 144, 100-105 (2009).
Peternel I.T., Koprivanac N., Božić A.M.L., Kušić H.M., “Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution”, Journal Hazardous Materials, 148, 477-484 (2007).
Raizada P., Singh P., Kumar A., Sharma G., Pare B., Jonnalagadda S.B., Thakur P., “Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation”, Applied Catalysis A: General, 486, 159-169 (2014).
Rego E., Marto .J, Marcos P.S., Labrincha J.A., “Decolouration of Orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation”, Applied Catalysis A: General, 355, 109-114 (2009).
Ruthven D.M., “Principles of adsorption and adsorption process”, John Wiley & Sons, Inc., New York, 1984.
Sakthivel S., Neppolian B., Shankar M.V., Arabindoo B., Palanichamy M., Murugesan V., “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2”, Solar Energy Materials & Solar Cells, 77, 65-82 (2003).
Salmi T., Valtakari D., PaaterotE., “Kinetic Study of the Carboxymethylation of Cellulose”, Industrial & Engineering Chemistry Research, 33, 1454-1459 (1994).
Sapawe N., Jalil A.A., Triwahyono S., Sah R.N.R.A., Jusoh N.W.C., Hairom N.H.H., Efendi J., “Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si O Zn bonds”, Applied Catalysis A: General, 456, 144-158 (2013).
Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D.W., “Understanding TiO2 photocatalysis: mechanisms and materials”, Chemical Reviews, 114, 9919-998 9 (2014).
Shen H., Xue T., Wang Y., Gao G., Lu Y., Fang G., “Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination”, Materials Research Bulletin, 84, 15-24 (2016).
Shibi I.G., Anirudhan T.S., “Polymer-grafted banana (Musa paradisiaca) stalk as an adsorbent for the removal of lead(II) and cadmium(II) ions from aqueous solutions: kinetic and equilibrium studies”, Journal of Chemical Technology & Biotechnology, 81, 433-444 (2006).
Sun S., Wang L., Wang A., “Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions”, Journal of Hazardous Materials, 136 , 930-937 (2006).
Suryavanshi R.D., Mohite S.V., Bagade A.A., Shaikh S.K., Thorat J.B., Rajpure K.Y., “Nanocrystalline immobilised ZnO photocatalyst for degradation of benzoic acid and methyl blue dye”, Materials Research Bulletin, 101, 324-333 (2018).
Sutirman Z.A., Sanagi M.M., Abd Karim K.J., Wan Ibrahim W.A., Jume B.H., “Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads”, International Journal of Biological Macromolecules, 116, 255-263 (2018).
Tan H.L., Amal R., Ng, Y.H., “Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review”, Journal of Materials Chemistry A, 5, 16498-16521 (2017).
Thomas J.K., “The chemistry of excitation at interfaces”, American Chemica Society, Washington DC, 1984.
Tian J., Chen L.J., Dai J.H., Wang X., Yin Y.S., Wu P.W., “Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process”, Ceramics International, 35, 2261-2270 (2009).
Tran H.V., Tran L.D., Nguyen T.N., “Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Materials Science and Engineering: A, 30, 304-310 (2006).
Tseng J.M., and Huang C.P., “Removal of chlorophenols from water by photocatalytic oxidation”, Water Science Technology, 23, 377-387 (1991).
Wan Ngah W.S., Hanafiah M.A.K.M., “Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents, a review”, Bioresource Technology, 99, 3935-3948 (2008).
Wang H., Xie C., Zhang W., Cai S., Yang Z., Gui Y., “Comparison of dye degradation efficiency using ZnO powders with various size scales,” Journal of Hazardous Materials, 141, 645-652 (2007).
Wang Y., Gao W., Li., “Carboxymethyl Chinese yam starch: synthesis, characterization, and influence of reaction parameters”, Carbohydrate Research, 344, 1764-1769 (2009).
Wayne C.E., and R.P. Wayne, “Photochemistry”, Oxford University Press, New York, 1996.
Whister, R.L., Bemiller, J.M., and Paschall, E.F., Starch: chemistry and technology. Academic Press Inc. U.S.A. (1984).
Wissiak K.S., Sket B., Vrtacnik M., “Heterogeneous photocatalytic decomposition of halosubstituted benzyl alcohols on semiconductor particles in aqueous media”, Chemosphere, 41, 1451-1455 (2000).
Xiao Y.H., Li L., Li Y., Fang M., Zhang L.D., “Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method”, Nanotechnology, 16, 671-674 (2005).
Yeber M.C., Rodríguez J., Freer J., Duran N., Mansilla H.D., “Photocatalytic degradation of cellulose bleaching euent by supported TiO2 and ZnO”, Chemosphere, 41, 1193-1197 (2000).
Zhou M., Gao X., Hu Y., Chen J., Hu X., “Uniform hamburger-like mesoporous carbon-incorporated ZnO nanoarchitectures: One-pot solvothermal synthesis, high adsorption and visible-light photocatalytic decolorization of dyes”, Applied Catalysis B: Environmental, 138-139, 1–8 (2013).
蔡來福,以電漿輔助化學氣相沉積法室溫成氧化鋅薄膜之研究,國立中央大學光電科學研究所,碩士論文,1999.
張俊鴻,以EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究,中央大學碩士論文,2006。
林麗娟,X光繞射原理及其應用,工業材料86期,100-109,1994。