跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡麗娟
Li-Juan Cai
論文名稱: 交聯型固態高分子電解質
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 89
語文別: 中文
論文頁數: 167
中文關鍵詞: 固態高分子電解質酚醛樹酯
外文關鍵詞: Solid polymer electrolyte, phenolic
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 結果發現交聯之後電解質的表面型態良好,並無相分離的現象,且熱裂解溫度提高到420℃至460℃之間,這不僅提升電解質的機械性能,更藉由酚醛樹酯網狀結構所形成之微孔區塊,來降低PEO結晶性,並促進鋰鹽解離速率。而高分子鏈段的運動性亦因為交聯網狀結構產生,使其自由體積變大而增加分子鏈段的運動性促使玻璃轉移溫度降低,有利於鋰離子的傳遞。尤其在高鋰鹽含量組成,當交聯比例增加時,如樣品D4y(composition?) 的玻璃轉移溫度更是降低為-46.9℃。此新型固態高分子電解質的導電度,並沒有因交聯提升機械性能而被犧牲。本研究中,交聯後的高分子電解質之導電度皆達10-3S/cm左右,而樣品D3y展現全溫區最佳的導電行為及優良之機械性,值得進行實際電池之組裝及性能測試。此一結果,特別是反應在常溫下導電度的大幅提昇,對固態高分子電解質之發展具有重大意義。



    The surface morphology is improved dramatically and thermal stability increased to 420 to 460 oC after cross-linking, which corroborates the improved mechanical property. Compared to pure PEO and PEO/phenolic without cross-linking, PEO crystallinity is reduced due to the constraint micro-domain. Furthermore the PEO chain motion is increased after cross-linking due to the expanded free-volume, as reflected in the reduction of glass temperature. For example, Tg for sample D4y (composition) is —46.9 ℃. However, the ion conductivity is not sacrificed by the improved mechanical property, instead it exhibited more superior room temperature conductivity, reaching the order of 10-3S/cm.. These results, especially the substantial improvement in room temperature conductivity, are significant to the development of solid polymer electrolyte technology. Sample D3y shows the most promising balance of mechanical and electrical properties and should be explored for battery assembly tests.

    中文摘要…………………………………………………………………..Ⅰ 英文摘要…………………………………………………………………..Ⅱ 目錄…………………………………………………………………….….Ⅳ 表目錄……………………………………………………………………..Ⅶ 圖目錄………………………………………………………………….….Ⅸ 第一章 緒論……………………………………………………….………..1 1-1 前言…………………………………………………….….….…….1 1-2研究目的……………………………………..…………..………….7 參考文獻/第一章…………..…………………………………………9 第二章 文獻回顧………………………………………………………….10 2-1高分子電解質的發展……………………………………….….…10 2-2固態高分子電解質之特性………………...………………………..12 2-3固態高分子電解質之研究方向…………….………………………14 2-3-1固態高分子主體的改質…………………………….……….…14 2-3-2水含量的影響……………….…………………….……………17 2-3-3尺寸安定性………………………………………..……………18 2-3-4抗氧化性………………………………………………………..18 2-3-5界面安定性………….…………………………….……………18 2-4 Novolac type酚醛樹酯………….…………..…………………..….20 2-4-1酚醛樹酯的特性………………………………………………..20 2-4-2Novolac type酚醛樹酯與聚氧化乙烯摻合之相關研究探討…21 2-4-3 交聯劑六甲烯基四胺的特性………………………………....22 參考文獻/第二章…………..………………………………………23 第三章 實驗技術原理…………………………………………………….26 3-1 樣品製備……………………………………………………………26 3-1-1 Novolac type酚醛樹酯(Phenolic resin)之合成………..…..…..26 3-1-2固態高分子電解質薄膜之製備………………………………..27 3-1-3交聯型固態高分子電解質薄膜之製備………………………..28 3-1-4實驗藥品………………………………………………………..29 3-2分析儀器應用理論……………….…………………………………30 3-2-1傅立葉式紅外線吸收光譜儀(FT-IR)原理………………….30 3-2-2微差掃瞄熱卡計(DSC)原理………………………………..31 3-2-3熱重量分析儀(TGA)原理…………………………………..32 3-2-4掃瞄式電子顯微鏡(SEM)原理…………………………….32 3-2-5固態核磁共振儀(Solid State NMR)原理…………………..33 3-2-5-1魔角旋轉…………………………………………………....35 3-2-5-2去耦合作用…………………………………………..….….37 3-2-5-3四極矩核種的重要性……………………………………....37 3-2-6交流阻抗分析儀(AC Impedance)原理及裝置…………….39 3-2-6-1兩種常用的導電度測量方法…………………..…………..39 3-2-6-2 等效電路(Equivalent circuit)………………….….…….43 3-3 實驗儀器操作程序…………….………………………….….…….47 參考文獻/第三章…………..………………………………………..51 第四章 結果與討論………………………………………………….……54 4-1 傅立葉式紅外線吸收光譜分析…………………………………....58 4-2 微差掃瞄熱卡計(DSC)之結晶性探討…………………………....69 4-3熱重量分析儀(TGA)分析………….…………………………....81 4-4掃瞄式電子顯微鏡(SEM)分析………….………………………....87 4-5固態核磁共振儀(Solid State NMR)分析……….…………...……107 4-6 微差掃瞄熱卡計(DSC)之Tg探討………………………..……..128 4-7交流阻抗分析儀(AC Impedance)分析探討……………….....…..141 參考文獻/第四章…………..………………………………………164 第五章 總結……………………………………………………………166 表目錄 Table 2-1列舉改質後高分子主體的導電性與玻璃轉移 溫度的變化……………………………………………………...16 Table 3-1本研究所使用的藥品及其代號,結構…………………………29 Table 3-2 Impedance equations for Equivalent circuit Elements………..…43 Table 4-1(a) The symbolize of samples that contents of composition in the B system………………………………...56 Table 4-1(b) The symbolize of samples that contents of composition in the C system……………………….…..……56 Table 4-1(c) The symbolize of samples that contents of composition in the D system…………………………...……56 Table 4-2 Mole ratios of Oxygen (Phenolic) : Lithium (salt): Oxygen (PEO) and Nitrogen (Hexamine) in the samples…………...….57 Table 4-3 固態高分子電解質之紅外線光譜主要吸收峰位置表……….62 Table 4-4 (a) PEOχ%、△Hf、Tm of R、B system before and after cross-linking with Hexamine………………………….73 Table 4-4 (b) PEOχ%、△Hf、Tm of C system before and after cross-linking with Hexamine. …………………………..….74 Table 4-4 (c) PEOχ%、△Hf、Tm of D system before and after cross-linking with Hexamine. ………………………..…….75 Table 4-5-1(a) Chemical Shfit of B system. ………………………..……113 Table 4-5-1(b) Chemical Shfit of C system. ………………………..……114 Table 4-5-1(c) Chemical Shfit of D system. ………………………..……114 Table 4-7-1(a) Activation energy (ev) of Li ion conduction in sample series B (10% Phenolic) ……………………………..…...146 Table 4-7-1(b) Activation energy (ev) of Li ion conduction in sample series C (15% Phenolic) ……………………………..…..147 Table 4-7-1(c) Activation energy (ev) of Li ion conduction in sample series D (20% Phenolic) ……………………………..…...148 圖目錄 Figure 1-1各種二次電池之能量比較圖……………………………………3 Figure 1-2 Maxell所開發之PLS型電池之(a)構造圖 (b)內部化學結構圖……………………………………………..4 Figure 1-3 Maxell所開發之PLC型電池之(a)構造圖 (b)內部化學結構圖……………………………………………..4 Figure 1-4 SANYO所開發之全膠態高分子電解質製作示意圖……….…5 Figure 1-5 Matsushita(松下)開發之高分子電池結構示意圖…….……5 Figure 1-6 GS-MELCOYEC鋰高分子電池內部高分子層剖面構造…….6 Figure 2-1 (a)PEO晶體 Helical結構 (b)鈉離子經由Helical內移動………………………………..11 Figure 2-2 鋰離子藉由高分子鏈段的運動性來達到傳遞的目的………11 Figure 2-3 1984年Armstrong等人探討高分子電解質中水含量 對導電度的影響……………………………………………….17 Figure 2-4 1992年Hong等人以交流阻抗分析法獲得鈍化層隨 時間的變化…………………………………………………...19 Figure 2-5 Novolac type酚醛樹酯的結構圖…………………………..20 Figure 3-1 樣品和核磁共振儀磁場的相對位置………………………....36 Figure 3-2 schematic diagram of the Four-terminal cell……………….......40 Figure 3-3 Nyquist diagram of AC impedance………………………….....42 Figure 3-4 Equivalent circuit Ⅰof an electrochemical cell..……………...44 Figure 3-5 Equivalent circuit Ⅱof an electrochemical cell...……………..45 Figure 3-6 Equivalent circuit Ⅲof an electrochemical cell…………….…45 Figure 3-7 Schematic diagram for AC impedance analysis……………….50 Figure 4-1為本論文研究架構之流程圖…………………………………55 Figure 4-1-1 IR spectra of pure PEO、pure Phenolic、pure LiClO4……..63 Figure 4-1-2 IR spectra of PEO/Hexamine、PEO/Phenolic、PEO/LiClO4 、Phenolic /LiClO4……………………………63 Figure 4-1-3 overlap part of pure PEO, pure phenolic , LiClO4…………...64 Figure 4-1-4(a) IR spectra of B series with increasing LiClO4 content.These sample without Hexamine. ………...…….65 Figure 4-1-4(b) IR spectra of C series with increasing LiClO4 content.These sample without Hexamine…………...……66 Figure 4-1-4(c) IR spectra of D series with increasing LiClO4 content.These sample without Hexamine…..………….…67 Figure 4-1-5 IR spectra of B3、C3、D3 series with increasing Hexamine content. LiClO4 content= 15wt%.……………..68 Figure 4-2-1 DSC thermograms of pure PEO and blending Phenolic..……76 Figure 4-2-2 Change of PEO crystallinity, χ, with phenolic and LiClO4 contents. These samples without Hexamine…….….77 Figure 4-2-3 Change of PEO crystallinity with Hexamine contents of 10wt% phenolic (B system)………………………..…….78 Figure 4-2-4 Change of PEO crystallinity with Hexamine contents of 15wt% phenolic(C system) ………………….…79 Figure 4-2-5 Change of PEO crystallinity with Hexamine contents of 20wt% phenolic(D system) …………………………………80 Figure 4-3-1 TGA thermogram of pure PEO and pure Phenolic……....….83 Figure 4-3-2 TGA curves of B1、B2、B3、B4 system………….……..84 Figure 4-3-3 TGA curves of C1、C2、C3、C4 system………….……..85 Figure 4-3-4 TGA curves of D1、D2、D3、D4 system…………...……86 Figure 4-4-1 SEM of Pure PEO (a) ×100 (b) ×400 (c) ×1K….….…..90 Figure 4-4-2 SEM of B0 (PEO/10wt%Phenolic)..……………….….…..…91 Figure 4-4-3 SEM of B series (×400) with increasing LiClO4 content. (a) B0, LiClO4=0 (b) B1, 5wt% (c) B2, 10wt% (d) B3, 15wt% (e) 18wt% (f) 25wt% ………………...…..92 Figure 4-4-4 SEM of C series with increasing LiClO4 content ×400 (a) C1 (b) C2 (c) C3 (d) C4, ×1K(e) C1 (f) C2 (g)C3(h)C4……………………...…..…93 Figure 4-4-5 SEM of D series with increasing LiClO4 content ×400 (a) D1(b) D2 (c) D3 (d) D4, ×1K(e) D1 (f) D2 (g) D3 (h) D4….…………………………94 Figure 4-4-6 SEM of samples B1 series (LiClO4=5wt%).....…….….….…95 Figure 4-4-7 SEM of samples B2 series (LiClO4=10wt%)…..……..…….96 Figure 4-4-8 SEM of samples B3 series (LiClO4=15wt%)……….….……97 Figure 4-4-9 SEM of samples B4 series (LiClO4=20wt%)……….….……98 Figure 4-4-10 SEM of samples C1 series (LiClO4=5wt%)………...….….99 Figure 4-4-11 SEM of samples C2 series (LiClO4=10wt%)………..…....100 Figure 4-4-12 SEM of samples C3 series (LiClO4=15wt%)………....…..101 Figure 4-4-13 SEM of samples C4 series (LiClO4=20wt%)……………..102 Figure 4-4-14 SEM of samples D1 series (LiClO4=5wt%)…………....…103 Figure 4-4-15 SEM of samples D2 series (LiClO4=10wt%)………..……104 Figure 4-4-16 SEM of samples D3 series (LiClO4=15wt%)……….…….105 Figure 4-4-17 SEM of samples D4 series (LiClO4=20wt%)……….…….106 Figure 4-5-1(a) 7Li-MAS NMR Spectra of B1 system…………..……….115 Figure 4-5-1(b) 7Li-MAS NMR Spectra of B2 system………………..…116 Figure 4-5-1(c) 7Li-MAS NMR Spectra of B3 system…………….…….117 Figure 4-5-1(d) 7Li-MAS NMR Spectra of B4 system…………………..118 Figure 4-5-2(a) 7Li-MAS NMR Spectra of C1 system…………………..119 Figure 4-5-2(b) 7Li-MAS NMR Spectra of C2 system…………………..120 Figure 4-5-2(c) 7Li-MAS NMR Spectra of C3 system………….………..121 Figure 4-5-2(d) 7Li-MAS NMR Spectra of C4 system…………………..122 Figure 4-5-3(a) 7Li-MAS NMR Spectra of D1 system…………………..123 Figure 4-5-3(b) 7Li-MAS NMR Spectra of D2 system…………………..124 Figure 4-5-3(c) 7Li-MAS NMR Spectra of D3 system…………………..125 Figure 4-5-3(d) 7Li-MAS NMR Spectra of D4 system…………………..126 Figure 4-5-4 The schematic diagram of the cross-link solid polymer electrolyte………………………..………………127 Figure 4-6-1 Tg of Pure PEO………………….………………….………133 Figure 4-6-2 Change of Tg in B series with LiClO4 contents increasing. These samples without Hexamine………….…134 Figure 4-6-3 Change of Tg in D series with LiClO4 contents increasing. These samples without Hexamine…………….135 Figure 4-6-4 Change of Tg in LiClO4/ Hexamine contents =20/15wt% with phenolic contents increasing…………………………136 Figure 4-6-5 Change of Tg in B4 series with Hexamine contents increasing………………………………………...137 Figure 4-6-6 Change of Tg in D4 series with Hexamine contents increasing.………………………………………..138 Figure 4-6-7 Change of Tg in the same LiClO4 contents with phenolic increasing. These samples without Hexamine …..139 Figure 4-6-8 Change of Tg in different contents of LiClO4 and phenolic……………………………………....139 Figure 4-6-9 Change of Tg in B4&D4 series with Hexamine contents increasing …………………………….140 Figure 4-6-10 Change of Tg in B2&D2 series with Hexamine contents increasing …………………………….140 Figure 4-7-1(a) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for B1 series…………………….……149 Figure 4-7-1(b) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for B2 series……………………...…..150 Figure 4-7-1(c) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for B3 series……………………….151 Figure 4-7-1(d) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for B4 series……………………….152 Figure 4-7-2(a) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for C1 series……………………….153 Figure 4-7-2(b) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for C2 series……………………….154 Figure 4-7-2(c) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for C3 series……………………….155 Figure 4-7-2(d) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for C4 series……………………….156 Figure 4-7-3(a) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for D1 series……………………….157 Figure 4-7-3(b) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for D2 series……………………….158 Figure 4-7-3(c) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for D3 series……………………….159 Figure 4-7-3(d) Conductivity vs. inverse temperature in the range from 25℃ to 90℃ for D4 series……………………….160 Figure 4-7-4 The three dimensional representation of LiClO4 and Hexamine content to Li+ conductivity in 10wt%Phenolic/PEO blend………………………………...161 Figure 4-7-5 The three dimensional representation of LiClO4 and Hexamine content to Li+ conductivity in 15wt%Phenolic/PEO blend………………………………..162 Figure 4-7-6 The three dimensional representation of LiClO4 and Hexamine content to Li+ conductivity in 20wt%Phenolic/PEO blend……………………………..…163

    參考文獻/第一章
    (1.) 詹益松,工業材料雜誌,90年3月,第171期
    (2.) 楊模樺,工業材料雜誌,89年11月,第167期
    (3.) 蔡克群,工業材料雜誌,89年12月,第168期
    (4.) “Power 2000”, Proceeding of the 8th Annual International Coference on Power Requirements for Mobile Computing and wireless Communications, 2000.
    (5.) Wright, P.V.; Fenton, D. E.; Parke, J. M.; Polymer, 1973, 14, 589.
    (6.) Walker, C. W.; Jr. and Salomon, M., J. Electrochem. Soc., 1993, 140, 3409.
    (7.) Xia, D. W.; Soltz, D. and Smid, J.; Solid State Ionics, 1984, 14, 221.
    (8.) Lee, H. S.; Yang, X. Q.; McBreen, J.; Xu, Z.; Skotheim, T. A. and Okamoto, Y.; J. Electrochem. Soc., 1994, 141, 886.
    (9.) Tarascon, J. M.; Wang, E.; Shokoohi, F. K.; McKinnon, W. R. and Colson, S. J. Electrochem. Soc., 1991, 138, 2859
    (10.) Florjanczyk, Z.; Bzducha, W.; Monikowska, E. Z. Electrochimica Acta 2000, 45, 1203-1209.
    參考文獻/第二章
    (1.) Wright, P.V.; Fenton, D. E.; Parke, J. M.; Polymer, 1973, 14, 589.
    (2.) Wright, P. V.; Br. Polymer.J., 1975, 7, 319.
    (3.) Armand, M.; Chabagno, J. M. and Duclot, M. Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, Extended Abstracts (Sept. 1978)
    (4.) Armand, M. Annu. Rev. Mate, Sci. 1986, 245, 4
    (5.) 楊家諭,工業材料雜誌,86年2月,第122期
    (6.) Shriver, D. F.; Ratner, M. A. Chem. Rev. 1988, 88, 109.
    (7.) Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta 2000, 45, 1501-1508.
    (8.) Abraham, K. M.; Alamgir, M. and Reynolds, R. K.; J. Electrochem Soc., 1989, 136, 3576
    (9.) 楊家諭, 鄭成鴻, 邱永成, 工業材料雜誌, 85年2月, 110期
    (10.) Tarascon, J. M.; Wang, E.; Shokoohi, F. K.; McKinnon, W. R. and Colson, S. J. Electrochem. Soc., 1991, 138, 2859
    (11.) Dahn, J. R.; Sacken, U. von; Juzkow, M. W. and Al-Janaby, H.; J. Electrochem. Soc., 1991, 138, 2207
    (12.) 任修平,中央大學化學研究所碩士論文,87年6月
    (13.) Xu-HS and Yang-CZ, J. Polym. Sci, part B, 1995, 33, 5, 745-751.
    (14.) Li Jean and Khan, Ishrat M., Macromolecules, 1993, 26, 4544-4550
    (15.) Fey, G. T. K.; W. and Dahn, J. R.; J. Electrochem. Soc., 1994, 141, 2279.
    (16.) Spindler, R.; Shriver, D. F. J. Am. Chem. Soc.1988, 110, 3036.
    (17.) Ganapathiappan, S.; Chen, K.; Shriver, D. F. J. Am. Chem. Soc. 1989, 111, 4091.
    (18.) Frech, R.; Bernson, A.; Lindgren, J.; Huang, W. Polymer, 1995, 36, 23, 4471-4478.
    (19.) 鄭宗田、張憲彰、溫添進, 化學, 第53卷第四期, 359∼368頁, 1995.
    (20.) Florian Muller-Plathe and Wilfred F. Van Gunsteren, J. Chem. Phys, 1995, 103, 4745-4755.
    (21.) Li Jean.; Pratt, Lawrence M. and Khan, Ishrat M., Journal of Polymer Science: Part A: Polymer Chemistry, 1995, 33, 1657-1663.
    (22.) 黃俊哲,中原大學化學系博士論文,88年10月
    (23.) Armstrong, R.D.; Clarke, M.D. Solid State Ionics. 1984, 11, 305
    (24.) Hunter, C. C.; Silnclair, D. C.; West, A. R. J. power sources. 1988, 24, 157.
    (25.) Hong, H.; Liguan, C.; Xuejie, H. Electrochim Acta, 1992, 37, 1671.
    (26.) F. Croce and B. Scrosati, “Interfacial Phenomena in Polymer-Electrolyte Cells:Lithium Passivation and Cycleability”, J. Power Sources, 1993, 9, 43-44.
    (27.) Knop, A.; Pilato, L. A. Springer-Verlag, Berlin. 1985.
    (28.) Mottram, J. T.; Geary, B. and Taylor, R. Journal of Material science, 1992, 27.
    (29.) Meier, J. F.; JR, E. M. Bellott and Frank, P. P. Journal of Applied Polymer Science, 1977, 21.
    (30.) Robert, D. G.; Lloyd, M. S. and Mainwaring, S. P. IEE Conference Publication, No. 382, Publ by IEE, Michael Faraday House, Stevenage, Engl, 1993.
    (31.) Sorathia, U.; Rollhauser, C. M. and Hughes, W. A. Fire and Materials, 1992, 16, 3.
    (32.) Jeelenlo, Y. Z.; Raucher, D. and Pearce, E. M. Journal of Applied Polymer Science, 1982, 27.
    (33.) MA, C.C.M.; Wu, H. D.; Lee, C-T., J. Polym. Sci, part B., 1998, 36, 1721-1729.
    (34.) Chu, P. P.; Wu, H. D.; Lee, C-T., J. Polym. Sci, part B., 1998, 36, 1647.
    (35.) 村山新一著,洪純仁編譯,”酚醛樹酯”, 復文書局,1984.
    參考文獻/第三章
    (1.) Wu, H.D.; Ma C.C.M.; Li, M. S.; Su, Y. F.; Wu, Y. D. Composites, Part A: Appl. Sci. Manu. 1997, 28A, 895.
    (2.) Silverstein, R. M.; Webster, F. X. “Spectrometric Identification of Organic”, 1963.
    (3.) Rabek, J. F. “Experimental Methods in Polymer Chemistry”, New York, 1980 .
    (4.) Douglas, A. S.; James, J. L. “Principles of Instrumental Analysis” Fourth Edition Chap. 23.
    (5.) P. R. Couchman and F. E. Karasz, Polymer, 1997, 38459-462.
    (6.) L. A. Utracki, Advanced Polymer Technology, 1985, 33, 5.
    (7.) J. M. Pochan, C. L. Beatty and D. F. Pochan, Polymer, 1979, 20 , 879.
    (8.) M. Gordon and J. S. Taylor, Journal of Applied Chemistry, 1952, 2, 493.
    (9.) T. G. Fox, Journal of Applied Bulletin American Physical Society, 1956, 1, 123.
    (10.) 陳力俊,”電子顯微鏡學發展沿革與未來趨勢”, 科儀新知,86年10月,第十九卷第二期.
    (11.) Zhang Xiaoqing,. Takegoshi K and Hikichi Kunio, Macromolecules, 1992, 25, 4871-4875.
    (12.) White Jeffery L and Mirau Peter, Macromolecules, 1993, 26, 3049-3054.
    (13.) Mathias L, Solid State NMR of polymers, 1991, (Plenum Press, New York).
    (14.) Sukhanova, T. E.; Urban, J. et. al., Journal of Materials Science, 1995, 30, 2201-2214.
    (15.) Z. Xiaoqing, S. Masahiko and T. Akinobu, Polymer, 1994, 35, 4280-4286.
    (16.) Z. Xiaoqing and S. David H., Macromolecules, 1994, 27, 4919-4926.
    (17.) K. Erdmann, W. Czerwinski, B. C. Gerstein, and M. Pruski, Journal of Polymer Science: Part B: Polymer Physics, 1994, 32, 1961-1968.
    (18.) K. J. McGrath, K. L. Ngai and C. M. Roland, Macromolecules, 1995, 28, 2825-2830.
    (19.) Z. Xiaoqing, K. Takegoshi and H. Kunio, Polymer, 1992, 33, 712-717.
    (20.) F. Maria, T. Van-Tan and S. Mark E., Polymer, 1994, 35, 1593-1600.
    (21.) J. Z. Hu, X. Wu, et. al., Solid State Nuclear Magnetic Resonance, 1996, 6, 187-196.
    (22.) 鄒德里, 科儀新知, 1994, 6, 88-96.
    (23.) Almeria, N.; Alexandra, S. Macromolecules, 1989, 22, 4426-4430.
    (24.) E. Fukushima, S. B. W.Roeder, “Experimental Pulse NMR-A Nuts and Bolts Approach”, Addison-Wesley: Reading, 1981.
    (25.) R. N. Ibbett, “NMR Spectroscopy of Polymers Blackie Academic & Professional ”, New York, 1993.
    (26.) J G Webster, “Eelctrical Impedance Tomography”, Adam Hilger, Bristol, 1990.
    (27.) “Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
    參考文獻/第四章
    (1.) Ray, I.; johansson, P.; Lindgren, J.; Lassegues, J. C.; Grondin, J.; Servant, L. J. Phys. Chem. A 1998, 102, 3249-3258.
    (2.) Bakker, A.; Gejji, S.; Lindgren, J.; Hermansson, K. Polymer 1995, 36, 23, 4371-4378.
    (3.) Sotele, J.J.; Soldi, V.; Nunes Pires, A.T. Polymer 1997, 38, 5, 1179-1185.
    (4.) Silverstein, R. M.; Webster, F. X. “Spectrometric Identification of Organic”, 1963.
    (5.) M. A. Dissanayake and R. Frech, Macromolecules, 1995, 28, 5312-5319.
    (6.) Wu, H. D.; Chu, P. P.; MA, C.C.M.; Chang, F. C. Macromolecules 1999, 32, 3097-3105.
    (7.) Lu, X.; Weiss, R. A. Macromolecules. 1991, 24, 4381.
    (8.) 羅時勝, 成功大學化學工程研究所碩士論文, 88年5月
    (9.) Chu, P. P.; Wu, H. D.; Lee, C-T., J. Polym. Sci, part B., 1998, 36, 1647.
    (10.) 方惠芬, 中央大學化學研究所碩士論文, 86年6月
    (11.) Chu, P. P.; Jen, H. P.; Lo, F. R.; Lang, C. L. Macromolecules. 1999, 32, 4738-4740.
    (12.) Jiang, S.; Yu, D.; Ji, X.; An, L.;Jiang, B. Polymer 2000, 41, 2041-2046.
    (13.) Stephan, A. M.; Kumar, T. P.; Renganathan, N. G.; Pitchumani, S.; Thirunakaran, R.; Muniyandi, N. J. Power Sour. 2000, 89, 80-87.
    (14.) Golodnitsky, D.; Peled, E. Electrochim. Acta 2000, 45, 1431-1436.
    (15.) Kataoka, H.; Saito, Y.; Sakai, T. J. Phys. Chem. B 2000, 104, 11460-11464.
    (16.) 劉立志、謝瑞、姜炳,”高分子科學的近代議題”,復旦大學出版社,1998年9月
    (17.) A. Johansson, A. Wendsjö and J. Tegenfeldt, Electrochimica Acta, 1992, 37, 1487.
    (18.) A. Johansson and J. Tegenfeldt, J. Chem. Phys., 1996, 104, 5317.
    (19.) Binesh Nader and S. V. Bhat, J. Polym. Sci.: Part B, Polym. Phys, 1998, 36, 1201-1209.
    (20.) Patrik Johansson, Jörgen Tegenfeldt and Jan Lindgren, J. Phys. Chem. A., 1998, 102, 4660-4665.
    (21.) Alamgir, M.; Abraham, K. M. “Lithium batteries new matelials developments and perspectives” edited by Pistoia, G. chap3 Elsevier science. 1994.
    (22.) Sperling, L. H. “Introduction to physical polymer science”, John wiley and sons, inc., 1992.
    (23.) Hou. J.; Baker, G. L. Chem. Mater, 1998, 10, 3311-3318.
    (24.) Cheng, T. T.; Wen, T. C. Journal of Electroanalytical Chemistry 1998, 459, 99-110.

    QR CODE
    :::