跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉東昇
Dong-Sheng Ye
論文名稱: Catalytic Mechanisms of the Ketol–Acid Reductoisomerase of Sso-ilvC2 Protein: An Umbrella Sampling QM/MM MD study
指導教授: 蔡惠旭
Hui-Hsu Gavin Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 48
中文關鍵詞: 酮醇酸還原異構
外文關鍵詞: QM/MM
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酮醇酸還原異構酶 (ketol-acid reductoisomerase) 是支鏈型胺基酸合成路徑 (branched chain amino acids biosynthetic pathway)中的第二個酵素,它催化2-羥-2-甲基-3-氧代丁酸 (2-乙醯-2-羥基丁酸) 轉換為2,3-二羥-3-甲基丁酸 (2,3-二羥-3-甲基戊酸)。酮醇酸還原異構酶的催化反應可分為兩步驟,第一步為與鎂離子有關的烷基轉移;第二步為利用菸鹼醯胺腺嘌呤二核苷酸或菸鹼醯胺腺嘌呤二核苷酸磷酸(NAD(P)H) 進行酮基還原。研究此種酵素的催化機制有助於開發新型的除草劑及抗生素,因為它們只存在於植物、細菌及真菌,而不存在於動物中。然而,對於酮醇酸還原異構酶的反應機制仍尚不明確,尤其是驅動烷基轉移的起始劑來源是不清楚的。在本篇研究中,我們的研究對象為Sso-ilvC2蛋白,它是硫化葉菌 (Sulfolobus solfataricus) 的酮醇酸還原異構酶,我們利用分子動態柔性擬合 (molecular dynamic flexible fitting) 技術與低溫電子顯微鏡 (cryo-EM) 影像 (解析度 = 3.38 Å) 來建立Sso-ilvC2 蛋白的三維結構,並根據所建立的結構提出三種可能的反應機制。我們利用密度泛函理論、量子力學/分子動力學 (quantum mechanics-molecular mechanics),以及傘狀抽樣結合量子力學/分子動力學的分子動態模擬 (umbrella sampling quantum mechanics-molecular mechanics molecular dynamic simulations),研究酮醇酸還原異構酶的催化機制。在研究中我們發現,酵素中的谷胺酸233(Glu233) 扮演著重要的角色。谷胺酸233不直接抽取反應物羥基上的質子,而是藉由抽取鎂離子上配位水的質子,並經過一連串的質子轉移過程,促進了甲基轉移的發生。經由計算得到的反應活化能可以符合實驗的結果。此外,我們所提出的反應機制,其產物與酵素及鎂離子的結合方式,與X光繞射得到的晶體結構也相似,谷胺酸233與產物的羥基形成連結,而不與鎂離子形成配位,實驗的活化能及X光繞射晶體結構都支持我們的反應機制,且此機制有助於研究開發新型的除草劑及抗生素。


    The conversion of 2-acetolactate (2-aceto-2-hydroxybutyrate) to 2,3-dihydroxy-isovalerate (2,3-dihydroxy-3-ethylbutyrate) is the second step in the biosynthesis of branched chain amino acids (BCAA) catalyzed by ketol-acid reductoisomerase (KARI). KARIs catalyze an alkyl migration of 2-acetolactate (2-aceto-2-hydroxybutyrate), followed by a ketol-acid reduction in terms of NAD(P)H. BCAA biosynthetic pathway is excellent target for the development of novel antibiotic and herbicide resistance as they are only present in bacteria, plants, and fungi; but absent in animals. However, the KARI reaction mechanism is remained unsolved; in particular, how the alkyl-migration catalyzed is still unknown. Here, we obtain the 3D structure of Sso-ilvC2 protein, a KARI from Sulfolobus solfataricus, from the cryo-EM (resolution = 3.38 Å) optimized by the iterative molecular dynamic flexible fitting (MDFF)-Rosetta technique. Based on the 3D structure of Sso-ilvC2 protein we obtained, we elucidate the catalytic mechanism of KARI reaction with density functional theory, hybrid quantum mechanical/molecular mechanical (QM/MM) theoretical calculations, and umbrella sampling QM/MM MD simulations. We observed that Glu233 plays a critical role in the catalytic reaction. Glu233 initiates the reaction in terms of proton abstraction on the coordinated water on the Mg2+ rather than on the hydroxyl of substrate directly. Proton shuttle by protonated Glu233 activated the methyl migration. The overall activation energy is good agreement with experimentally-measured value. In addition, the product in our mechanism has same structural features of active site of X-ray determined structure, where the Glu233 is bonded with the terminal oxygen of product and does not coordinated with Mg2+. Experimental activation energy and X-ray determined structure supports our catalytic mechanism. Our mechanism provides clues for rational design of de novo antibiotic and herbicide resistances.

    摘要.........i Abstract...........iii Contents............v List of Figures...............vi Chapter 1: Introduction..............1 Chapter 2: Computational Methods..........5 Chapter 3: Results and Discussion..........9 3-1 3D Solution Structure of Sso-ilvC2-Mg2+-NADH-CPD Complex obtained from cryo-EM..........9 3-2 Modeling Sso-ilvC2-2-acetolactate Complex Structures........13 3-3 2D US QM/MM MD simulations of the Structure A....16 3-4 Intramolecular proton transfer via intramolecular H-bond based on Structure B...20 3-5 Coordinated Water assisted Proton Shuttle via Glu233 based on Structure C....23 Chapter 4: Conclusions......29 References.........30

    1. Yamamoto, K.; Tsuchisaka, A.; Yukawa, H., Branched-Chain Amino Acids. In Amino Acid Fermentation, Yokota, A.; Ikeda, M., Eds. Springer Japan: Tokyo, 2017; pp 103-128.
    2. Arfin, S. M.; Umbarger, H. E., Purification and Properties of the Acetohydroxy Acid Isomeroreductase of Salmonella Typhimurium. J Biol Chem 1969, 244, 1118-27.
    3. Chunduru, S. K.; Mrachko, G. T.; Calvo, K. C., Mechanism of Ketol Acid Reductoisomerase. Steady-State Analysis and Metal Ion Requirement. Biochemistry 1989, 28, 486-493.
    4. Thomazeau, K.; Dumas, R.; Halgand, F.; Forest, E.; Douce, R.; Biou, V., Structure of Spinach Acetohydroxyacid Isomeroreductase Complexed with Its Reaction Product Dihydroxymethylvalerate, Manganese and (Phospho)-Adp-Ribose. Acta Crystallographica Section D 2000, 56, 389-397.
    5. You, L.; Ajit, K.; Jie, W. S.; P., M. R.; J., W. S.; Bostjan, K.; Volker, S.; A., S. M.; Gerhard, S.; W., G. L., Crystal Structure of Mycobacterium Tuberculosis Ketol‐Acid Reductoisomerase at 1.0 Õ Resolution – a Potential Target for Anti‐Tuberculosis Drug Discovery. The FEBS Journal 2016, 283, 1184-1196.
    6. Garcia, M. D.; Nouwens, A.; Lonhienne, T. G.; Guddat, L. W., Comprehensive Understanding of Acetohydroxyacid Synthase Inhibition by Different Herbicide Families. Proceedings of the National Academy of Sciences 2017, 114, E1091-E1100.
    7. Atsumi, S.; Hanai, T.; Liao, J. C., Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels. Nature 2008, 451, 86.
    8. M., P. K.; David, T.; Shan, Z.; Ajit, K.; Mario, G.; You, L.; A., S. M.; P., M. R.; Gerhard, S.; W., G. L., Crystal Structures of Staphylococcus Aureus Ketol‐Acid Reductoisomerase in Complex with Two Transition State Analogues That Have Biocidal Activity. Chemistry – A European Journal 2017, 23, 18289-18295.
    9. Brinkmann-Chen, S.; Flock, T.; Cahn, J. K.; Snow, C. D.; Brustad, E. M.; McIntosh, J. A.; Meinhold, P.; Zhang, L.; Arnold, F. H., General Approach to Reversing Ketol-Acid Reductoisomerase Cofactor Dependence from Nadph to Nadh. Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 10946-51.
    10. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Lin, K.-F.; Huang, C.-H.; Hsieh, D.-L.; Ko, T.-P.; Tsai, M.-D., Use of Cryo-Em to Uncover Structural Bases of pH Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase. Journal of the American Chemical Society 2019, 141, 6136-6140.
    11. Karino, M.; Kubouchi, D.; Hamaoka, K.; Umeyama, S.; Yamataka, H., Mechanism of Α-Ketol-Type Rearrangement of Benzoin Derivatives under Basic Conditions. The Journal of Organic Chemistry 2013, 78, 7194-7198.
    12. Arigoni, D.; Giner, J. L.; Sagner, S.; Wungsintaweekul, J.; Zenk, M. H.; Kis, K.; Bacher, A.; Eisenreich, W., Stereochemical Course of the Reduction Step in the Formation of 2-C-Methylerythritol from the Terpene Precursor 1-Deoxyxylulose in Higher Plants. Chem Commun 1999, 1127-1128.
    13. Zhou, J.; Wu, R.; Wang, B.; Cao, Z.; Yan, H.; Mo, Y., Proton-Shuttle-Assisted Heterolytic Carbon–Carbon Bond Cleavage and Formation. ACS Catalysis 2015, 5, 2805-2813.
    14. Mrachko, G. T.; Chunduru, S. K.; Calvo, K. C., The Ph Dependence of the Kinetic Parameters of Ketol Acid Reductoisomerase Indicates a Proton Shuttle Mechanism for Alkyl Migration. Archives of Biochemistry and Biophysics 1992, 294, 446-453.
    15. Sonya, T.; M., P. M.; Volker, S.; A., L. J.; W., G. L.; Gerhard, S., Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol–Acid Reductoisomerase. Chemistry – A European Journal 2016, 22, 7427-7436.
    16. Proust-De Martin, F.; Dumas, R.; Field, M. J., A Hybrid-Potential Free-Energy Study of the Isomerization Step of the Acetohydroxy Acid Isomeroreductase Reaction. Journal of the American Chemical Society 2000, 122, 7688-7697.
    17. Rajiv, T.; Yu‐Ting, L.; W., G. L.; G., D. R., Probing the Mechanism of the Bifunctional Enzyme Ketol‐Acid Reductoisomerase by Site‐Directed Mutagenesis of the Active Site. The FEBS Journal 2005, 272, 593-602.
    18. Lindert, S.; McCammon, J. A., Improved Cryoem-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction. Journal of Chemical Theory and Computation 2015, 11, 1337-1346.
    19. Torrie, G. M.; Valleau, J. P., Monte Carlo Free Energy Estimates Using Non-Boltzmann Sampling: Application to the Sub-Critical Lennard-Jones Fluid. Chemical Physics Letters 1974, 28, 578-581.
    20. Torrie, G. M.; Valleau, J. P., Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. Journal of Computational Physics 1977, 23, 187-199.
    21. Laio, A.; Parrinello, M., Escaping Free-Energy Minima. Proceedings of the National Academy of Sciences 2002, 99, 12562-12566.
    22. Darve, E.; Pohorille, A., Calculating Free Energies Using Average Force. The Journal of Chemical Physics 2001, 115, 9169-9183.
    23. Rodriguez-Gomez, D.; Darve, E.; Pohorille, A., Assessing the Efficiency of Free Energy Calculation Methods. J Chem Phys 2004, 120, 3563-78.
    24. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional Free-Energy Calculations Using the Weighted Histogram Analysis Method. Journal of Computational Chemistry 1995, 16, 1339-1350.
    25. Kästner, J., Umbrella Sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 932-942.
    26. Becke, A. D., Density‐Functional Thermochemistry. Iii. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98, 5648-5652.
    27. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37, 785-789.
    28. Petersson, G. A.; Al‐Laham, M. A., A Complete Basis Set Model Chemistry. Ii. Open‐Shell Systems and the Total Energies of the First‐Row Atoms. The Journal of Chemical Physics 1991, 94, 6081-6090.
    29. Neese, F., The Orca Program System. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 73-78.
    30. Neese, F., Software Update: The Orca Program System, Version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, e1327.
    31. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D., Optimization of the Additive Charmm All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Φ, Ψ and Side-Chain Χ(1) and Χ(2) Dihedral Angles. Journal of chemical theory and computation 2012, 8, 3257-3273.
    32. Phillips James, C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel Robert, D.; Kalé, L.; Schulten, K., Scalable Molecular Dynamics with Namd. Journal of Computational Chemistry 2005, 26, 1781-1802.
    33. Humphrey, W.; Dalke, A.; Schulten, K., Vmd: Visual Molecular Dynamics. Journal of Molecular Graphics 1996, 14, 33-38.
    34. Vanommeslaeghe, K.; D Mackerell, A., Automation of the Charmm General Force Field (Cgenff) I: Bond Perception and Atom Typing, 2012; Vol. 52.
    35. Vanommeslaeghe, K.; Raman, P.; D Mackerell, A., Automation of the Charmm General Force Field (Cgenff) Ii: Assignment of Bonded Parameters and Partial Atomic Charges, 2012; Vol. 52.
    36. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. The Journal of Chemical Physics 1995, 103, 4613-4621.
    37. Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J., A New Oniom Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives1dedicated to Professor Keiji Morokuma in Celebration of His 65th Birthday.1. Journal of Molecular Structure: THEOCHEM 1999, 461-462, 1-21.
    38. Cheatham, T. E.; Cieplak, P.; Kollman, P. A., A Modified Version of the Cornell Et Al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. Journal of Biomolecular Structure and Dynamics 1999, 16, 845-862.
    39. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A 1998, 102, 1995-2001.
    40. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-Pcm Solvation Model. Journal of Computational Chemistry 2003, 24, 669-681.
    41. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.
    42. Chan, K.-Y.; Gumbart, J.; McGreevy, R.; Watermeyer, Jean M.; Sewell, B. T.; Schulten, K., Symmetry-Restrained Flexible Fitting for Symmetric Em Maps. Structure 2011, 19, 1211-1218.
    43. Trabuco, L. G.; Villa, E.; Schreiner, E.; Harrison, C. B.; Schulten, K., Molecular Dynamics Flexible Fitting: A Practical Guide to Combine Cryo-Electron Microscopy and X-Ray Crystallography. Methods (San Diego, Calif.) 2009, 49, 174-180.
    44. Dudev, T.; Lim, C., Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins. Chemical Reviews 2003, 103, 773-788.

    QR CODE
    :::