| 研究生: |
黃苡甄 I-chen Huang |
|---|---|
| 論文名稱: |
Nanog和Oct4表現對肌肉分化之影響 Effects of Nanog and Oct4 overexpression on myogenic differentiation |
| 指導教授: |
陳盛良
Shen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 外文關鍵詞: | Nanog, Oct4 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胚胎幹細胞可分化發育成生物個體的所有組織,究竟為何幹細胞能具有如此的特性而有別於體細胞?近來的研究,發現幹細胞當中存在著獨特的因子能維持其多能性,這些獨特的調控因子可藉由刺激或抑制其標的基因的表現來調節胚胎發育分化的過程。Nanog是一個近年來才被確定的基因,其在維持幹細胞獨特的特性扮演很重要的角色。而Oct4,亦命名為Oct3,是屬於POU家族中的其中一員,藉由和序列ATGCAAAT相互作用來調節其標的基因的表現。在這個實驗當中,我們要來探討,當Nanog或是Oct4大量表現在C2C12肌肉細胞時,是否能使得肌肉細胞重新具有多能性?利用反轉錄病毒來感染C2C12肌肉細胞,使其能夠穩定並且大量的表現Nanog或Oct4,以及同時表現兩者基因。我們發現,在Nanog的穩定表達細胞株於分化的狀態其形成的肌管數目僅僅為控制組的五分之一,其形成的肌管數目分別是59條/單位面積以及236條/單位面積。在形態上來說,Nanog的穩定表達細胞株的分化狀態較控制組來得成熟,所以,Nanog不僅僅影響了肌管形成的數目,也影響了肌肉分化的程度。另外,當我們將Oct4大量表現時,MyoD以及Pax7的表現量會下降。利用轉染的方式,我們進一步的證明瞭在C2C12細胞當中,Nanog所扮演的是刺激者的角色,而Oct4所扮演的則是抑制者的角色,Nanog會形成同質聚合體,Nanog和Oct4之間具有微弱的交互作用。依據Nanog中央的homeodomain的部分,將Nanog分為三個domain,並且將Nanog的N terminal domain利用Gal-4回報系統來測試其是否具有transactivation的能力,我們發現Nanog N terminal domain的transactivation能力會依據細胞株以及promoter的不同而有所不同。另外,利用GST-pull down的方式來證明了在in vivo 的情況下Nanog、Oct4以及SMRT三者之間具有交互作用。
Embryonic stem cells are pluripotent progenitors for virtually all cell types in our body. Recent studies have shown that some transcription factors can sustain pluripotency of the stem cells. These regulators activate or repress patterns of gene expression that mediate phenotypic changes during stem cell differentiation. Nanog has recently been proposed to play a key role in maintaining stem cell pluripotency. Oct4 (Oct3), a member of the POU family of homeodomain proteins, can regulate the expression of their target genes through binding to an octameric sequence ATGCAAAT. Here, we try to explore whether over-expression of Nanog or Oct4 (Oct3) will re-establish the pluripotency of determined myoblasts and thus prevent its terminal differentiation? Using retrovirus carrying Nanog or Oct4 cDNA, we have engineered cell lines that can stably express Nanog or Oct4 or both of them. We further demonstrated that the number of the myotubes in Nanog over-expressed cell is about one fifth to that of retrovirus control infected cell. In the meantime, the number of myotubes is 59 in Nanog over-expressed cell and is 236 in retrovirus control infected cell. Morphologically, the Nanog overexpressed myotube is more matured than the retrovirus control infected cell. Our preliminary results show that Nanog actually influence the degree of differentiation not only in the number of myotube formation but also in the state of myotube maturation. Furthermore, we also found that expression of MyoD and Pax7 is downregulated in Oct4 overexpressed cells. In transient transfection reporter assays, Nanog functions as an activator, but Oct4 functions as a repressor in C2C12 cell line. We also provide evidence showing that Nanog can form homodimer complex and also interacts with Oct4 weakly. Based on the homeodomain, Nanog can be divided into three regions. In order to investigate the transactivation activity of Nanog N terminal domain, we used the well-established Gal-4 reporter system. We report here that N terminal domain of Nanog could perform different transactivation activity in different cell type under different promoter context. By using GST pull down experiment, we further demonstrated the relationship among Nanog, Oct4 and SMRT.
1. Alison, M. R., Poulsom, R., Forbes, S. & Wright, N. A. An introduction to stem cells. J Pathol 197, 419-23 (2002).
2. Fliedner, T. M., Maiwald, M., Weinsheimer, W. & Szepesi, T. Prediction of clinical outcome of radiation accident victims. Prog Clin Biol Res 352, 459-70 (1990).
3. J. A. Thompson et al., Science 282,1145-1147 (1998)
4. Wiedemann, P. M., Simon, J., Schicktanz, S. & Tannert, C. The future of stem-cell research in Germany. A Delphi study. EMBO Rep 5, 927-31 (2004).
5. Rossant, J. Stem cells from the Mammalian blastocyst. Stem Cells 19, 477-82 (2001).
6. Kassar-Duchossoy, L. et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19, 1426-31 (2005).
7. Smith, A. G. & Hooper, M. L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol 121, 1-9 (1987).
8. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374, 1-20 (2003).
9. Zhang, J. G. et al. Evidence for the formation of a heterotrimeric complex of leukaemia inhibitory factor with its receptor subunits in solution. Biochem J 325 ( Pt 3), 693-700 (1997).
10. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12, 2048-60 (1998).
11. Krishnan, V. et al. Bone anabolic effects of sonic/indian hedgehog are mediated by bmp-2/4-dependent pathways in the neonatal rat metatarsal model. Endocrinology 142, 940-7 (2001).
12. Norton, J. D. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113 ( Pt 22), 3897-905 (2000).
13. Saijoh, Y. et al. Identification of putative downstream genes of Oct-3, a pluripotent cell-specific transcription factor. Genes Cells 1, 239-52 (1996).
14. Pesce, M. & Scholer, H. R. Oct-4: control of totipotency and germline determination. Mol Reprod Dev 55, 452-7 (2000).
15. Niwa, H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26, 137-48 (2001).
16. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-6 (2000).
17. Scholer, H. R. Octamania: the POU factors in murine development. Trends Genet 7, 323-9 (1991).
18. Klemm, J. D., Rould, M. A., Aurora, R., Herr, W. & Pabo, C. O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, 21-32 (1994).
19. Brehm, A., Ohbo, K. & Scholer, H. The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol Cell Biol 17, 154-62 (1997).
20. Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881-94 (1996).
21. Ben-Shushan, E., Pikarsky, E., Klar, A. & Bergman, Y. Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol Cell Biol 13, 891-901 (1993).
22. Guo, Y. et al. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression. Proc Natl Acad Sci U S A 99, 3663-7 (2002).
23. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9, 2635-45 (1995).
24. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-42 (2003).
25. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-55 (2003).
26. Kappen, C., Schughart, K. & Ruddle, F. H. Early evolutionary origin of major homeodomain sequence classes. Genomics 18, 54-70 (1993).
27. Christ, B. & Ordahl, C. P. Early stages of chick somite development. Anat Embryol (Berl) 191, 381-96 (1995).
28. Tajbakhsh, S. The genetics of murine skeletal muscle biogenesis. Results Probl Cell Differ 38, 61-79 (2002).
29. Tajbakhsh, S. Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. Curr Opin Genet Dev 13, 413-22 (2003).
30. Stockdale, F. E. Myogenic cell lineages. Dev Biol 154, 284-98 (1992).
31. Zammit, P. & Beauchamp, J. The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68, 193-204 (2001).
32. Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483-94 (2003).
33. de la Serna, I. L., Carlson, K. A. & Imbalzano, A. N. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27, 187-90 (2001).
34. Zhang, P. et al. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 13, 213-24 (1999).
35. McKinsey, T. A., Zhang, C. L. & Olson, E. N. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11, 497-504 (2001).
36. Puri, P. L. & Sartorelli, V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol 185, 155-73 (2000).
37. Arnold, H. H. & Winter, B. Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev 8, 539-44 (1998).
38. Yun, K. & Wold, B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8, 877-89 (1996).
39. Molkentin, J. D., Black, B. L., Martin, J. F. & Olson, E. N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125-36 (1995).
40. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435-9 (1990).
41. Okamoto, K. et al. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461-72 (1990).
42. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-62 (2002).
43. Lang, D. et al. Distinct enhancers regulate neural expression of Pax7. Genomics 82, 553-60 (2003).