| 研究生: |
劉冠宏 Guan-Hong Liu |
|---|---|
| 論文名稱: |
離岸風力機塔架在正常發電下之非共平面疲勞裂縫成長分析 Analysis of Non-Coplanar Fatigue Crack Growth in Offshore Wind Turbine Tower under Normal Power Production |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 離岸風力機 、非共平面裂縫 、疲勞裂縫成長 、等效應力法 |
| 外文關鍵詞: | Non-Coplanar Cracks, Ansys SMART Crack Growth, Equivalent Stress Method |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討5 MW離岸風力機塔架在正常發電工況(DLC 1.2)下,塔架所承受之風浪耦合負載對結構應力的影響,並針對在塔架具有非共平面裂縫時之疲勞裂縫成長行為。研究方法整合GH-Bladed、Ansys和Matlab等軟體以進行分析。研究內容分為兩個部分。第一部分考量規範IEC 61400-3之DLC 1.2設計工況,探討離岸風力機在正常發電運轉下之塔架應力大小與其分布狀況。第二部分為在Ansys SMART Crack Growth 建立非共平面橢圓裂縫,並討論非共平面表面裂縫之間,因為裂縫成長產生相互作用影響而引起的屏蔽或增強效應,並探討疲勞裂裂縫成長壽命預測。
研究結果顯示在正常發電運轉下,從切入風速至額定風速,離岸風力機塔架最大正向應力會逐漸上升,當超過額定風速後會因為葉片節距角作動而改變,使得最大正向應力呈現下降趨勢。並且在額定風速為10.88 m/s時,風力機塔架最大應力位於下塔架底部上方0.2 m的迎風面處。若在該位置建立非共平面雙橢圓裂縫,裂縫會在最大正向應力處發展成主要裂縫,該裂縫的成長模式與單裂縫情況相近,並且裂縫之間會因為屏蔽效應的影響,致使另一裂縫形成次要裂縫,並減緩甚至停止裂縫成長。在不同裂縫幾何尺寸下,兩條等長裂縫之裂縫尖端在達到任一條裂縫的垂直平分線投影位置時,會有最大的屏蔽效應。當兩條裂縫的水平間距等於裂縫的兩倍長度時,會有最大增強效應。兩條裂縫長度之比值會影響非共平面裂縫成長,裂縫長度比越小,屏蔽效應越明顯。在疲勞裂縫成長壽命預測分析結果方面,不同幾何尺寸的非共平面雙裂縫,疲勞裂縫成長因為屏蔽效應的影響,其疲勞損傷不一定會大於單裂縫所造成疲勞損傷,而是取決於二條裂縫的相對位置。
This study investigates the influence of the wind-wave coupling load on the fatigue crack growth of the wind turbine tower which has non-coplanar cracks. A NREL 5MW OWT wind turbine was taken as the object, and DLC 1.2 normal power production conditions in IEC 61400-3 were considered. The research method was to integrate software such as GH-Bladed, Ansys and Matlab for analysis. The content is divided into two parts. The first part explores the magnitude and distribution of tower stress under normal power production operation. The second part is to establish non-coplanar elliptical cracks in Ansys SMART Crack Growth, explore the shielding or enhancement effects caused by the interaction between non-coplanar cracks, and discuss the fatigue crack growth life.
The results show that under normal power production operation, from the cut-in wind speed to the rated wind speed, the maximum normal stress of the wind turbine tower gradually increases. When the wind speed exceeds the rated wind speed, due to the change of the blade pitch angle, the maximum normal stress shows a downward trend. Under the rated wind speed, the maximum stress of the wind turbine tower is located at 0.2 m above the bottom of the lower tower on the windward side. If a non- coplanar double elliptical crack is established at this position, the crack will develop into the primary crack at the maximum normal stress. The growth pattern of this crack is similar to that of a single crack. Moreover, due to the influence of the shielding effect, the other crack will form a secondary crack, which will slow down or even stop the growth of the crack.
Under different crack geometric dimensions, when the crack tips of two equal - length cracks reach the projection position of the vertical bisector of either crack, the maximum shielding effect occurs. The greatest enhancement effect will occur when the horizontal distance between the two cracks is equal to twice the crack length. The ratio of the lengths of the two cracks will affect the growth of non-coplanar cracks. The smaller the ratio of the crack lengths, the more obvious the shielding effect. In terms of the analysis results of the fatigue crack growth life, for non-coplanar double cracks of different geometric dimensions, due to the influence of the shielding effect, the fatigue damage caused by the fatigue crack growth is not necessarily greater than that caused by a single crack, but depends on the relative positions of the two cracks.
1.International Renewable Energy Agency (IRENA), "Renewable Capacity Highlights", Renewable capacity statistics 2025, 2025. https://www.irena.org/Publications/2025/Mar/Renewable-capacity-statistics-2025
2.Global Wind Energy Council (GWEC), "Global Wind Report 2025," 2025.https://www.gwec.net/events/2025-global-wind-report-launch
3."風力發電4年推動計畫",經濟部能源局,2017.
4.網路資料:先示範、次潛力、後區塊:打造臺灣成為亞洲離岸風電技術產業聚落。2022年 10月,取
https://www.mtic.org.tw/News/Detail/540ec578-c7c8-4fcb-9949-7a91a5bbcc65?ModuelID=N4.
5.網路資料:CSBC confirms cracks in wind farm project。2020年10月,取自https://www.taipeitimes.com/News/biz/archives/2020/10/07/2003744703.
6."Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines," IEC 61400-3, International Electrotechnical Commission, 2009.
7.網路資料:How do offshore wind turbines work ?,取自https://us.orsted.com/renewable-energy-solutions/offshore-wind/what-is-offshore-wind-power/how-do-offshore-wind-turbines-work
8.網路資料:風力發電單一服務窗口。2023年6月,取自https://www.twtpo.org.tw/offshore_show.aspx?id=963
網路資料:Vertical Axis Wind Turbines (VAWTs) — Have you heard about them ?。2023年12月,取自
9.https://medium.com/sustainable-cities/vawt-the-forgotten-wind-turbine-design-6907ea811a94
10.網路資料:Electricity from the Wind — Part 1。2020年12月,取自https://xenogyre.com/2020/12/16/electricity-from-wind-turbines-part-1/
11.P. Amjadian, S. P. Neill and V. M. Barclay, "Characterizing Seabed Sediments at Contrasting Offshore Renewable Energy Sites," Frontiers in Marine Science, Vol. 10, 2023. DOI: 10.3389/fmars.2023.1156486.
12."Wind Turbines - Part 1: Design Requirements," IEC 61400-1, International Electrotechnical Commission, 2019.
13.R. Glienke, F. Kalkowsky, A. F. Hobbacher, A. Holch, M. Thiele, F. Marten, R. Kersten and K.-M. Henkel, " Evaluation of the Fatigue Resistance of Butt-welded Joints in Towers of Wind Turbines − a Comparison of Experimental Studies with Small Scale and Component Tests as well as Numerical Based Approaches with Local Concepts," Welding in the World, Vol. 68, pp. 1143-1168, 2024. DOI: 10.1007/s40194-023-0.
14.吳春昊,"離岸風力機基座裂縫的強度與疲勞分析",國立中央大學機械工程學系,碩士論文,2022.
15.A. Jacob and A. Mehmanparast, "Crack Growth Direction Effects on Corrosion-Fatigue Behaviour of Offshore Wind Turbine Steel Weldments," Marine Structures, Vol. 75, Article No. 102881, pp. 1–12, 2021.
16.O. Adedipe, F. Brennan, A. Mehmanparast, A. Kolios and I. Tavares, "Corrosion Fatigue Crack Growth Mechanisms in Offshore Monopile Steel Weldments," Fatigue and Fracture of Engineering Materials and Structures, Vol. 40, No. 11, pp. 1868–1881, 2017. DOI: 10.1111/ffe.12606.
17.J. Zhang, S. Hertelé, N. Micone and W. D. Waele, "Modelling Framework for 3D Fatigue Crack Propagation in Welds of Offshore Steel Structures, " Proceedings of the 5th International Conference on Integrity-Reliability-Failure, Porto/Portugal, July 24-28, pp. 751–762, 2016.
18.J. Tian, X. Li, and F. Li, "Research on Fatigue Crack Growth Life of Offshore Wind Turbine Towers with Double Cracks in Extreme Environments," Journal of Offshore Mechanics and Arctic Engineering, Vol. 147, No. 5, pp. 052001-1–052001-10, 2025.
19.A. Syahmi, M. K. Awang, A. E. Ismail, and M. N. Ibrahim, "Interaction of Surface Crack on Solid Shaft due to Combined Loading," Research Progress in Mechanical and Manufacturing Engineering, Vol. 2, No. 1, pp. 117–135, 2021.
20.Z. Han, C. Qian and H Li, "Study of the Shielding Interactions Between Double Cracks on Crack Growth Behaviors Under Fatigue Loading," Metals, Vol. 10, No. 2, Article No. 202, 2019.
21.A. Takahashi, A. Suzuki, and M. Kikuchi, "Fatigue Crack Growth Simulation of Two Non-coplanar Embedded Cracks Using s-version Finite Element Method," Frattura ed Integrità Strutturale, Vol. 48, pp. 473-480, 2019.
22.Y. Chen, J. Hu, G. Bian, X. Liu, and C. Zhao, "Experimental and Numerical Study on the Interaction of Non-coplanar Double Surface Cracks," Chinese Journal of Applied Mechanics, Vol. 29, No. 5, pp. 585–588, 2012.
23.W.A. Moussa, R. Bell, C. L. Tan, "The Interaction of Two Parallel Non-coplanar Identical Surface Cracks Under Tension and Bending," International Journal of Pressure Vessels and Piping, Vol. 76, pp. 135-145, 1999.
24.M. Perl, C. Levy and J. Wang, "Interaction Effects in Combined Arrays of Radial and Longitudinal Semi-Elliptical Surface Cracks in Pressurized Thick-Walled Cylinder," Pressure Vessel Technology, Vol. 119, pp.167-174, 1997.
25.W. O. Soboyejo and J. F. Knott, "The Propagation of Non-coplanar Semi-elliptical Fatigue Cracks," Fatigue & Fracture of Engineering Materials & Structures, Vol. 14, pp.37-49, 1991.
26.C. Qian , Z. Han, and H Li, "Investigation of the Enhancement Interactions Between Double Parallel Cracks on Fatigue Growth Behaviors, " Materials, Vol. 13, Iss. 13, 2020.DOI: 10.3390/ma13132952
27.Z. Han, C. Qian, L. Tang and H. Li, "Determination of the Enhancement or Shielding Interaction between Two Parallel Cracks Under Fatigue Loading, " Materials, Vol. 12, Iss. 8, 2019.DOI: 10.3390/ma12081331
28.經濟部標準檢驗局,"離岸風力發電場址調查及設計技術指引",2023.
29.陳俞凱、陳景林,"以IEC 61400-1對彰濱風場數據進行風況評估",台灣風能協會學術研討會暨NEPII離岸風力及海洋能源主軸中心成果發表會,國立台灣大學,台灣,2015年12月.
30.DNV GL, and Garrad Hassan & Partners Ltd, "Bladed Theory Manual Version 4.8, " 2016.
31.網路資料 : Particle Motion in Deep Water。2023年 6月,取自https://www.scubageek.com/articles/wwwparticle.html.
32.T. Gentils, L. Wang and A. Kolios, "Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm," Applied Energy, Vol. 199, pp. 187-204, 2017.
33.唐榕崧,"複合材料葉片振動行為之研究",國立交通大學工學院專班精密與自動化工程學程,碩士論文,2009.
34.王晟桓、陳世雄,"基於葉片元素動量理論之水平軸風力發電機葉片空氣動力分析程序",臺灣風能學術研討會G6-09,國立澎湖科技大學,台灣,2010年12月.
35.DNV GL, "Design of Offshore Wind Turbine Structures,” DNV-OS-J101, 2014.
36.吳柏澄,"離岸風力機塔架於不同疲勞工況之應力分析及共平面裂縫之疲勞裂縫成長分析",國立中央大學機械工程學系,碩士論文,2023.
37.A. A. Griffith, "The Phenomena of Rupture and Flow in Solids," Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921.
38.G. R. Irwin, "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, " Journal of Applied Mechanics, Transaction of ASME, Vol. 24, pp. 361-364, 1957.
39.M. Chiesa, "Linking Advanced Fracture Models to Structural Analysis, " The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Thermodynamics and Fluiddynamics, 2001.
40.Z. Zhuang, Z. Liu and B. CHeng, "Fundamental Linear Elastic Fracture Mechanics," in Extended Finite Element Method, Z. Zhuang, Z. Liu, B. Cheng and J. Liao, Eds., Academic Press, pp. 13-31, 2014.
41.G. R. Liu, N. Nourbakhshnia and Y. W. Zhang, "A Novel Singular ES-FEM Method for Simulating Singular Stress Fields Near the Crack Tips for Linear Fracture Problems," Engineering Fracture Mechanics, Vol. 78, No. 6, pp. 863-876, 2011.
42.A. O. Ayhan and A. C. Kaya, "Fracture Analysis of Cracks in Orthotropic Materials Using Ansys, " Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Vol. 5: Marine, Microturbines and Small Turbomachinery, Oil and Gas Applications, Structures and Dynamics, Parts A and B. Barcelona, Spain. May 8-11, pp. 873-881, ASME, 2006.
43.S. R. Lampman, "Fatigue and Fracture,"ASM International, Vol. 19, 1996.
44.P. C. Paris and F. Erdogan, "A Critical Analysis of Crack Propagation Law," Journal of Basic Engineering, Vol. 85, pp. 528-534, 1963.
45.M. Matsuishi and T. Endo, "Fatigue of Metals Subjected to Varying Stress," Japan Society of Mechanical Engineers, Fukuoka, Japan, Vol. 68, No. 2, pp. 37-40, 1968.
46."Standard Practices for Cycle Counting in Fatigue Analysis," ASTM International, 2017.
47.M. B. Fuchs, "The Unit-Load Method," in Structures and Their Analysis: Springer, M. B. Fuchs, Eds., Springer Cham pp. 85-110, 2016.
48.J. Tian, Xiang Li and Fanchun Li, "Research on Fatigue Crack Growth Life of Offshore Wind Turbine Towers with Double Cracks in Extreme Environments," Journal of Offshore Mechanics and Arctic Engineering, Vol. 147, pp. 052001-1–052001-10, 2025. DOI: 10.1115/1.4067396.
49.崔海平,"離岸風電場址風況、海洋參數及負載分析技術研究",金屬工業研究發展中心研究報告,台灣,2018.
50.J. Jonkman, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5-MW Reference Wind Turbine for Offshore System Development," National Renewable Energy Laboratory, Golden, Co., Technical Report No. NREL/TP-500-38060, 2009.
51.U. F. Gamiz, E. Zulueta, A. Boyano, J. A. R. Hernanz, and J. M. L. Guede, " Microtab Design and Implementation on a 5MW Wind Turbine," Applied Sciences, Vol. 7, No. 6, pp. 536-553, 2017.
52.J. Jonkman and W. Musial, "Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment, " National Renewable Energy Laboratory, Golden, Co., Technical Report No. NREL/TP-5000-48191, 2010.
53.S. Aasen, A. M. Page, K. S. Skau and T. A Nygaard, "Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine," Wind Energy Science Discussions, Vol. 2, pp. 361-376, 2016.
54.洪浚傑,"離岸風力機負載分析與結構應力分析",國立中央大學機械工程學系,碩士論文,2019.
55.劉岳群,"離岸風力機塔架在正常發電下之疲勞分析",國立中央大學機械工程學系,碩士論文,2020.
56.Ansys, "Mechanical APDL 2024 R2," Mechanical Application 2024 R2, Mechanical User's Guide, 2024.
57.楊子霆,"大型風力機塔架延壽評估",國立中央大學機械工程學系,碩士論文,2018.
58.黃宣凱,"離岸風力機塔架疲勞裂縫成長分析",國立中央大學機械工程學系,碩士論文,2022.
59.N. E. Dowling, “Mechanical Behavior of Materials,” Fourth ed., Persaon, UK, 1988.
60.Hyundai Welding, "Wind Tower Welding Solution, "2023.
https://www.hyundaiwelding.com/data/file/download/brochures/Hyundai_Welding_Wind_Brochure_2023_eng.pdf
61.周聖勳,"離岸風力機塔架之開機負載及失效評估分析" 國立中央大學機械工程學系,碩士論文,2021.
62.BS 7910, "Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures," British Standard Institution, 2013.
63AWS, "Structural Welding Code—Steel, "AWS D1.1/D1.1M, 2006.
64ASME, "Rules for Construction of Pressure Vessels, "ASME BPVC Section VIII, 2017.
65H. Tada, P. C. Paris and G. R. Irwin, "The Stress Analysis of Cracks Handbook, " Del. Research Corporation, Hellertown, 1973.
66R. J. Price and J. Trevelyan, "Boundary Element Simulation of Fatigue Crack Growth in Multi-site Damage," Engineering Analysis with Boundary Elements, Vol. 43, pp. 67-75, 2014.
67.H. Dündar and A. O. Ayhan, "Three-dimensional Fracture and Fatigue Crack Propagation Analysis in Structures with Multiple Cracks, " Computers and Structures, Vol. 158, Iss. C, pp. 259-273, 2015.