跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐天慶
Tien-Ching Hsu
論文名稱: 單晶積體化之高速、低耗能850nm波段面射型雷射和光檢測器的應用
High-Speed, Low-Power-Consumption, 850nm VCSEL and Monolithic Integrated PD Module for The Application of Optical Interconnect
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 光檢測器面射型雷射
外文關鍵詞: PD, 850nm VCSEL
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們證明了在砷化鎵/砷化鋁鎵(GaAs/AlGaAs)的基板上,完成了高速單戴子傳輸光檢測器和使用鋅擴散的面射型雷射的積體化整合,面射型雷射有很高的資料傳輸與功率消耗的比值(2.4Gbps/mW),而單載子傳輸光檢測器可在無外加偏壓下操作,如此一來可應用在雙向傳輸的光連結技術上。積體化的單戴子傳輸光檢測器量子效率可以達到46.7%,也有很高的3dB 頻寬(13Gbit/s),且從低到高的光電流(0.1 to 0.4mA),都可以打開10Gbit/s的眼圖,不需要額外的驅動電路。而積體化的面射型雷射也可以通過10Gbit/s的眼圖,在很低的操作電流下(3mA),而且只需要很低的交流調變的高頻訊號(0.25Vp-p驅動)就可以打開眼圖。


    We demonstrate the monolithic integration of high-speed GaAs/AlGaAs based uni-traveling carrier photodiode (UTC-PDs) with Zn-diffusion vertical-cavity surface-emitting lasers (VCSELs) both with very-high data-rate/power-consumption ratio for the application to bi-directional optical interconnect Under zero-bias operation, the integrated UTC-PD exhibits reasonable external efficiency (46.7%), wide 3-dB bandwidth (13GHz) and 10Gbit/sec eye-opening from low to high output photocurrents (0.1 to 0.4mA) without integrating with any active integrated circuits (ICs). Regarding with the integrated Zn-diffusion VCSEL, it can achieve 10Gbit/sec eye-opening under a pre-bias current as small as 3mA and a very-small radio-frequency (RF) driving voltage (0.25Vp-p driving-voltage). The data-rate/power-consumption ratio of the VCSEL is extremely-high, as much as 2.4Gbps/mW.

    目錄 摘要 I Abstract II 致 謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 序 論 1 1-1 多媒體時代 1 1-2 光連結應用 1 1-3 面射型雷射簡介 5 1-4 光檢測器簡介 7 1-5 單晶積體化VCSEL和單載子傳輸光偵測器 7 第二章 理 論 8 2-1 VCSEL製程基本理論 8 2-1-1. 鋅擴散於DBR 8 2-1-2. VCSEL的選擇性水氧化理論 11 2-1-3. 發散角 14 2-2 無外加偏壓的UTC光二極體之原理介紹 16 2-2-1 傳統的PIN光二極體之缺點 16 2-2-2單載子傳輸光二極體簡介 18 2-2-3無外加偏壓之單載子傳輸光二極體簡介 18 第三章 實 驗 21 3-1 磊晶結構 21 3-2 VCSEL和UTC-PD 24 3-3 鋅擴散製程 25 3-4 水氣氧化 28 3-5 製作電極以及金屬回火(Annealing) 30 3-6 平坦化及製作金屬接線 35 第四章 量測結果與討論 39 4-1 VCSEL量測系統 39 4-1-1 電流對電壓(I-V)的量測 39 4-1-2 光功率對電流(L-I)之量 39 4-1-3 頻譜(Spectrum) 之量測系統 40 4-1-4 頻寬(Bandwidth)之量測系統 40 4-1-5 眼圖(Eye pattern)之量測系統 41 4-2 VCSEL量測結果 41 4-2-1 電流對電壓(I-V)曲線 41 4-2-2 輸出光功率對電流(L-I)曲線 42 4-2-3 光頻譜(Optical spectra)圖 44 4-2-4 頻寬(Bandwidth) 和D係數(D-factor) 44 4-2-5 S11、S21參數模擬 47 4-2-6 K參數(K parameter) 50 4-2-7 眼圖(eye pattern)量測 52 4-3 UTC-PD量測系統 53 4-3-1 電流對電壓(I-V)的量測 53 4-3-2 頻寬(Bandwidth)之量測系統 54 4-3-3 眼圖(Eye pattern)之量測系統 55 4-4 UTC-PD量測結果 56 4-4-1 電流對電壓(I-V)曲線 56 4-4-2 頻寬(Bandwidth) 之量測結果 57 4-4-3 S11、S21參數模擬 58 4-4-4 眼圖(Eye pattern)之量測結果 62 第五章 結論與未來研究 63 參考文獻 64

    參考文獻
    [1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
    [2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
    [3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren, Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
    [4] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang“The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength”IEEE Journal of Quantumelectronics, VOL. 45, NO. 7, JULY 2009
    [5] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
    [6] R. Michalzik, M. Stach, F. Rinaldi, and S. Lorch, Ulm University, Inst. Of Optoelectronics, Albert-Einstein-Allee 45, 89081 Ulm, Germany “Monolithic Integration of VCESLs and MSM Photodiodes for bidirectional multimode fiber communications”, Proc. of SPIE, Vol.6484 648409-1
    [7] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart, “Self-interstitial mechanism for Zn diffusion-induceddisordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl.Phys., vol. 73, pp. 3769-3781, 1993.
    [8] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion,” J. Appl.Phys., vol. 55, pp. 7082-7084, 1982.
    [9] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,“ Appl. Phys. Lett., vol. 38, pp.776-778, 1981.
    [10] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induceddisorder in AlAs/GaAs superlattice,” Semicond. Sci. Technol., 4, pp. 841-846, 1989.
    [11] 楊立群”高速高功率單模態850nm 波段面射型雷射”國立中央大學電機工程學系碩士論文(民國96年)
    [12] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90 年).
    [13] R. G. Hunsperger, “Integrated Optics:Theory and Technology,” Hong Kong,Springer-Verlag, 77, 1992.
    [14] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett., vol. 47, pp.1193, 1985.
    [15] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison,“Transverse mode characteristics of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 57, pp. 218-220, 1990.
    [16] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, pp. 3770, 1965.
    [17] M. Ochiai, Appl. Phys. Lett., vol. 68, pp. 1898, 1996 and J. H. Kim , Appl. Phys. Lett., vol. 69, pp. 3357, 1996.
    [18] Kent D. Choquette, Member, IEEE, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, Member, IEEE, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 3, June 1997.
    [19] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers, ”IEEE Photon. Technol. Lett., 7, 1237, 1995.
    [20] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent no.5, 262, 360, 1993.
    [21] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., 69, pp. 1935-1837, 1996.
    [22] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 740-742, 1996.
    [23] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low thresholdmicrocavity lasers using half-wave spacer layers and lateral index confinement,” Appl.Phys. Lett., vol. 66, pp. 1723-1725, 1995.
    [24] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp. 3413-3415, 1995.
    [25] Hermann A. Haus, ”Waves and Fields in Optoelectronics,” 1984.
    [26] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995.
    [27] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron, vol. 10, pp. 709–727, July/August 2004
    [28] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, (World Scientific, Singapore, 1996), pp. 2.-30
    [29] X. Li, N. Li, S. Demiguel, J.C. Campbell, D. A. Tulchinsky, and K. J. Williams, “A comparison of front and backside-illuminated highsaturation power partially depleted absorber photodetectors,” IEEE J. of Quantum Elec., vol. 40, no. 9, pp. 1321–1325, 2004
    [30] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang, “90% coupling of topsurface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silicafiber,” Electron. Lett., vol. 26, no. 19, pp.347-350 1990.
    [31] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser,” Soc. Photo-opt Instrun. Eng., vol. 1418, pp. 414-421, 1991.
    [32] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, ”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780-1782, 1991.
    [33] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion,” IEEE Photon. Technol. Lett., 13, pp. 266-269, 2001.
    [34] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
    [35] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., 33, 1810-1824, 1997.
    [36] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
    [37] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
    [38] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007
    [39] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley, Oct. 1995.
    [40] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
    [41] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
    [42] Chao-Kun Lin, Member, IEEE, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects,” IEEE Journal of Selected Topics in Quantum Electronics, no. 5, Sep. / Oct. 2007.
    [43] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep. 2007.
    [44] Ralph H. Johnson , Daniel M. Kuchta “30 Gb/s Directly Modulated 850 nm Datacom VCSELs” in Proc. Conf. Lasers Electro-Opt. (CLEO 2008), Paper CPDB2.

    QR CODE
    :::