跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄒承翰
Cheng-Han Tsou
論文名稱: 開發具鈦/鋁矽銅歐姆接觸之砷化銦鎵金氧半場效電晶體
Development of InGaAs Metal-Oxide-Semiconductor Field-Effect Transistors with Ti/AlSiCu Ohmic Contact
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 砷化銦鎵金氧半場效電晶體鳍式金氧半場效電晶體無金歐姆接觸鋁矽銅合金
外文關鍵詞: InGaAs, MOSFET, FinFET, Au-free ohmic contact, titanium, aluminum silicon copper alloy
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的五十年來,以矽為主的互補式金氧半積體電路製程技術一直遵循摩爾定律,持續微縮電晶體尺寸並提升元件效能。但是在逐漸接近其物理極限的情況下,最近幾年有許多研究者極力探索各種新材料與新製程的解決方案。在許多新穎材料之中,三五族化合物半導體材料,如砷化鎵與砷化銦鎵,因具備高電子遷移率的優勢,被認為是n型通道電晶體最具潛力的候選材料。然而,此材料通常是以鈦/鉑/金作為歐姆接觸的金屬堆疊結構。在傳統的矽基材製程中,金被視為嚴重汙染源。為了適用於目前的矽基材積體電路製程,本研究開發一無金歐姆接觸金屬堆疊結構,並應用於砷化銦鎵n通道金氧半場效電晶體,以驗證其特性。

    本論文研究提出以鈦/鋁矽銅合金作為砷化銦鎵的歐姆接觸金屬堆疊結構。經傳輸線模型(TLM)量測實驗顯示,此金屬堆疊結構的歐姆接觸在無退火的條件下,特徵接觸電阻值(ρc)可低至2.85×10-7 Ω-cm2。熱穩定性與長時間高電流應力測試也證明了其可行性。

    本研究將此無退火歐姆接觸金屬堆疊結構應用於平面式與鰭式無接面砷化銦鎵金氧半場效電晶體。所製作之n-InGaAs MOSFET與FinFET通道寬度與閘極長度,分別為1.5 µm/0.7 µm與80 nm/40 nm。所量得之電流開關比(Ion/Ioff)分別約為104與102,最大汲極電流密度分別為216 µA/µm與38 µA/µm,次臨界斜率(S.S.)分別為180 mV/dec與350 mV/dec,且閘極漏電流密度約可低於1×10-3 µA/µm。

    由本論文研究之實驗結果顯示,所提出之非合金歐姆接觸金屬堆疊結構極適用於n型砷化銦鎵金氧半場效電晶體,未來將可應用於三五/矽異質整合積體電路之製造。


    For the past five decades, the development of Si-based CMOS manufacturing technology has been following Moore's Law in shrinking the physical dimension and enhancing the device performance of integrated circuits. As the manufacturing technology approaches its limit, potential solutions in terms of materials and processes are explored extensively in recent years. Among many novel materials, III-V compounds such as GaAs and InGaAs, which have high electron mobility, are considered very promising for n-channel field-effect transistors (FETs). For these arsenide-based materials, Au-based metal stack for ohmic contacts is fairly popular and mature. However, Au is a notorious contaminant in Si processes, and is strictly prohibited in a Si fab. In this work, an Au-free ohmic contact metal stack is proposed and verified on n-channel InGaAs MOSFETs.

    The proposed ohimic metal stack on n-type InGaAs consists of Ti (titanium) and AlSiCu (aluminum silicon copper alloy). Transmission line method (transfer length method, TLM) measurements indicate that specific contact resistivity (ρc) as low as 2.85×10-7 Ω-cm2 without post-metal annealing has been achieved without any alloying process. Thermal stability and current stress tests also demonstrate the feasibility of this ohmic contact stack.

    This ohmic metal stack is applied to both InGaAs junctionless planar MOSFETs and fin field-effect transistors (FinFETs). The channel width (Wch) and gate length (Lg) of n-InGaAs MOSFETs and FinFETs are 1.5 µm/0.7 µm and 80 nm/40 nm, respectively. The n-InGaAs MOSFETs and FinFETs exhibit an Ion/Ioff ratio of 104 and 102, a maximum drain current density of 216 µA/µm and 38 µA/µm, and a subthreshold swing (S.S.) of 180 mV/dec and 350 mV/dec, respectively. The gate leakage current density of n-InGaAs MOSFET and FinFET is below 1×10-3 µA/µm.

    As indicated by the results above, the non-alloyed Au-free ohmic contact stack is very suitable for n-InGaAs MOSFETs, and should be applicable to III-V/Si heterogeneous integrated circuits in the future.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.2.1 材料選擇 3 1.2.2 砷化銦鎵歐姆接觸之文獻回顧 7 1.3 論文架構 8 第二章 理論基礎與實驗設備 9 2.1 前言 9 2.2 金屬-半導體接面之物理特性 10 2.3 傳輸線模型原理 12 2.3.1 電流傳輸機制 12 2.3.2 特徵接觸電阻值 14 2.4 實驗儀器 16 2.4.1 原子層沉積系統簡介 16 2.4.2 穿透式電子顯微鏡簡介 18 2.4.3 能量色散X射線光譜儀簡介 21 第三章 無金歐姆接觸金屬應用於砷化銦鎵之研究 24 3.1 簡介 24 3.2 試片製備與實驗步驟 25 3.3 探討無金歐姆接觸金屬應用於砷化銦鎵之電性變化 30 3.3.1 砷化銦鎵佈植矽對於歐姆接觸電性之分析 30 3.3.2 電流應力對於無金歐姆接觸金屬穩定性之探討 33 3.4 退火處理對於無金歐姆接觸金屬影響之分析 35 3.4.1 無金歐姆接觸金屬熱穩定性之探討 35 3.4.2 退火處理對於金屬-半導體界面影響之高解析TEM圖 38 3.5 本章總結 43 第四章 砷化銦鎵平面式與鰭式金氧半場效電晶體製作及特性分析 44 4.1 前言 44 4.2 砷化銦鎵金氧半場效電晶體製程技術開發 45 4.2.1 平面式與鰭式金氧半場效電晶體製作流程 45 4.3 砷化銦鎵金氧半場效電晶體特性分析與討論 52 4.3.1 平面式金氧半場效電晶體之電性探討 52 4.3.2 鰭式金氧半場效電晶體之電性探討 55 4.4 砷化銦鎵金氧半場效電晶體之俯視圖與高解析TEM圖 57 4.4.1 平面式金氧半場效電晶體之俯視圖與高解析TEM圖 57 4.4.2 鰭式金氧半場效電晶體之俯視圖與高解析TEM圖 59 4.5 本章總結 61 第五章 總結 62 參考文獻 64

    [1] N. Waldron, C. Merckling, W. Guo, P. Ong, L. Teugels, S. Ansar, et al., "An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates," in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, pp. 1-2, 2014.
    [2] C.-H. Jan, "10 years of transistor innovations in System-on-Chip (SoC) era," in Solid-State and Integrated Circuit Technology (ICSICT), 2014 12th IEEE International Conference on, pp. 1-4, 2014.
    [3] C.-H. Jan, P. Bai, J. Choi, G. Curello, S. Jacobs, J. Jeong, et al., "A 65nm ultra low power logic platform technology using uni-axial strained silicon transistors," in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 60-63, 2005.
    [4] C.-H. Jan, P. Bai, S. Biswas, M. Buehler, Z.-P. Chen, G. Curello, et al., "A 45nm low power system-on-chip technology with dual gate (logic and I/O) high-k/metal gate strained silicon transistors," in Electron Devices Meeting, 2008. IEEE International, pp. 1-4, 2008.
    [5] P. VanDerVoorn, M. Agostinelli, S.-J. Choi, G. Curello, H. Deshpande, M. El-Tanani, et al., "A 32nm low power RF CMOS SOC technology featuring high-k/metal gate," in VLSI Technology (VLSIT), 2010 Symposium on, pp. 137-138, 2010.
    [6] C.-H. Jan, U. Bhattacharya, R. Brain, S.-J. Choi, G. Curello, G. Gupta, et al., "A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications," in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 3.1. 1-3.1. 4, 2012.
    [7] S. Novak, C. Parker, D. Becher, M. Liu, M. Agostinelli, M. Chahal, et al., "Transistor aging and reliability in 14nm tri-gate technology," in Reliability Physics Symposium (IRPS), 2015 IEEE International, pp. 2F. 2.1-2F. 2.5, 2015.
    [8] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, et al., "A 10nm High Performance and Low-Power CMOS Technology Featuring 3rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Inte rconnects," in Electron Devices Meeting (IEDM), 2017 IEEE International, pp. 29.1. 1-29.1. 4, 2017.
    [9] S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, et al., "High mobility CMOS technologies using III–V/Ge channels on Si platform," Solid-State Electronics, vol. 88, pp. 2-8, 2013.
    [10] D. J. Smith, J. Lu, T. Aoki, M. R. McCartney, and Y.-H. Zhang, "Observation of compound semiconductors and heterovalent interfaces using aberration-corrected scanning transmission electron microscopy," Journal of Materials Research, vol. 32, pp. 921-927, 2016.
    [11] J.-W. Wu, C.-Y. Chang, K.-C. Lin, E. Y. Chang, J.-S. Chen, and C.-T. Lee, "The thermal stability of ohmic contact to n-type InGaAs layer," Journal of electronic materials, vol. 24, pp. 79-82, 1995.
    [12] R. Dormaier and S. E. Mohney, "Factors controlling the resistance of Ohmic contacts to n-InGaAs," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 30, p. 031209, 2012.
    [13] J. Lee, M. Li, J. Kim, G. Shin, G.-w. Lee, J. Oh, et al., "Contact Resistance Reduction between Ni–InGaAs and n-InGaAs via Rapid Thermal Annealing in Hydrogen Atmosphere," JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, vol. 17, pp. 283-287, 2017.
    [14] S. Kim, M. Yokoyama, R. Nakane, O. Ichikawa, T. Osada, M. Hata, et al., "High-performance InAs-on-insulator n-MOSFETs with Ni-InGaAs S/D realized by contact resistance reduction technology," IEEE Transactions on Electron Devices, vol. 60, pp. 3342-3350, 2013.
    [15] A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, et al., "Ultralow resistance, nonalloyed Ohmic contacts to n-In Ga As," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, pp. 2036-2039, 2009.
    [16] A. M. Crook, E. Lind, Z. Griffith, M. J. Rodwell, J. D. Zimmerman, A. C. Gossard, et al., "Low resistance, nonalloyed Ohmic contacts to InGaAs," Applied Physics Letters, vol. 91, p. 192114, 2007.
    [17] E. H. Rhoderick, "Metal-semiconductor contacts," IEE Proceedings I-Solid-State and Electron Devices, vol. 129, p. 1, 1982.
    [18] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006.
    [19] A. Yu, "Electron tunneling and contact resistance of metal-silicon contact barriers," Solid-State Electronics, vol. 13, pp. 239-247, 1970.
    [20] C.-Y. Chang, Y.-K. Fang, and S. M. Sze, "Specific contact resistance of metal-semiconductor barriers," Solid-State Electronics, vol. 14, pp. 541-550, 1971.
    [21] T. Shen, G. Gao, and H. Morkoc, "Recent developments in ohmic contacts for III–V compound semiconductors," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 10, pp. 2113-2132, 1992.
    [22] S. S. Li, "Metal–semiconductor contacts," in Semiconductor Physical Electronics, ed: Springer, pp. 284-333, 2006.
    [23] T. Suntola, "Atomic layer epitaxy," Materials Science Reports, vol. 4, pp. 261-312, 1989.
    [24] 許宏泰、徐英展、陳志立、謝明勳, "高解析度穿透式電子顯微鏡分析(HRTEM)," 國立台灣大學化學系.
    [25] 張銀祐, "掃瞄式電子顯微鏡及能量散佈光譜儀原理與奈米科技應用," 2007.
    [26] D. Vaughan, "Energy Dispersive X-ray Microanalysis An Introduction," Thermo Fisher Scientific Inc., 2008.
    [27] D. Ivey, "Platinum metals in ohmic contacts to III-V semiconductors," Platinum Metals Review, vol. 43, pp. 2-12, 1999.
    [28] C.-T. Lee, K.-L. Jaw, and C.-D. Tsai, "Thermal stability of Ti/Pt/Au ohmic contacts on InAs/graded InGaAs layers," Solid-State Electronics, vol. 42, pp. 871-875, 1998.
    [29] T. Shen, Z. Fan, G. Gao, H. Morkoc, and A. Rockett, "Molecular‐beam‐epitaxy‐deposited nonalloyed Al contacts to n‐type and p‐type InGaAs," Applied physics letters, vol. 59, pp. 2254-2256, 1991.
    [30] 許乃蓉, "鍺與砷化銦鎵鰭式場效電晶體共閘極製程之開發," 國立中央大學, 2017.

    QR CODE
    :::