跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李元馨
Yuan-shin Li
論文名稱: 廣義彼得森圖形的控制數
Domination in generalized Petersen graphs.
指導教授: 廖勝強
Sheng-Chyang Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 99
語文別: 英文
論文頁數: 41
中文關鍵詞: 控制數獨立控制數全控制數
外文關鍵詞: independent domination number, total domination number, domination number
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們定義一個點集合的子集S 是圖G 的控制集,要滿足任一點在
    V(G)-S 中至少與一個S 中的點相鄰。 G 的控制數即G 之最小控制集
    的元素個數,記做? (G)。S 為一個獨立控制集即S 也要是個獨立子集。
    G 的獨立控制數即G 之最小獨立控制集的元素個數,記做(G) i ? 。子集
    S 是圖G 的全控制集,要滿足G 中的所有點V(G)至少與一個S 中的點
    相鄰。G 的全控制數即G 之最小全控制集的元素個數,記做(G) t ? 。
    本論文是在探討在廣義Petersen 圖形中P(2k ?1,k)、P(2k,k)、
    P(n,1)、P(n,2)及P(n,3)的控制數、獨立控制數及全控制數。


    A vertex subset S of a graph G is a dominating set if each vertex in V(G)−S is adjacent to at least one vertex in S. The domination number of G is the cardinality of a minimum dominating set of G, denoted by γ(G). A dominating set S is called an independent dominating set if S is also an independent set. The independent domination number of G is the cardinality of a minimum independent dominating set of G, denoted by γi(G). A dominating set S is called a total dominating set if each vertex v of G is dominated by some vertex u , v of S. The total domination number of G is the cardinality of a minimum total dominating set of G, denoted by γt(G).
    In a generalized Petersen graph P(n, k), its vertex set should be the union of V = {v1, v2, ..., vn} and U = {u1, u2, ..., un}, and its edge set be the union of {vivi+1, viui, uiui+k} which all the subscripts are under addition modulo n and 1 ≤k ≤ ⌊n2⌋.
    In [3], [4], and [5], the exact values of γ(P(2k + 1, k)), γ(P(n, 1)), γ(P(n, 2)),γt(P(n, 2)), and γ(P(n, 3)) are determined. In this thesis, we will determine the
    exact values of γi(P(2k+1, k)), γt(P(2k+1, k)), γ(P(2k, k)), γi(P(2k, k)), and γt(P(2k, k))in Section 2. In Section 3, we find the exact values of γi(P(n, 1)), γt(P(n, 1)), and
    γi(P(n, 2)). We give the exact value of γi(P(n, 3)) and a lower bound and an upperbound for γt(P(n, 3)) in Section 4.

    Contents Abstract (in English) ii Contents iii 1 Introduction 1 2 Varied domination numbers of P(n, ⌊n 2 ⌋) 4 3 Varied domination numbers of P(n, 1) and P(n, 2) 18 4 Varied domination numbers of P(n, 3) 30 References 41 ii

    References
    [1] A. Behzad, M. Behzad, and C. E. Praeger, On the domination number of the
    generalized Petersen graphs, Discrete Mathematics 308(2008), 603-610.
    [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American
    Elsevier, New York, 1976.
    [3] Jianxiang Cao, Weiguo Lin, and Minyong Shi, Total Domination Number of
    Generalized Petersen Graphs, Intelligent Information Management 2009, 15-18
    [4] B. J. Ebrahimi, N. Jahanbakht, and E. S. Mahmoodian, Vertex domination of
    generalized Petersen graphs , Discrete Mathematics 309(2009), 4355-4361.
    [5] H. Yan, L. Kang, and G. Xu, The exact domination number of the generalized
    Petersen graphs, Discrete Mathematics 309(2009), 2596-2607.

    QR CODE
    :::