跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卡術尼
Sunil Kumar
論文名稱: 利用中子繞射探討層狀硫屬氧化物BiOCuX (X=S,Se)的
Spin, Charge and Lattice Couplings in Layered Oxychalcogenide BiOCuX (X= S, Se) Compounds Studied by Neutron Diffraction
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 99
語文別: 英文
論文頁數: 141
中文關鍵詞: 中子繞射硫屬氧化物硫屬氧化物磁結構中子繞射磁結構
外文關鍵詞: Magnetic structure, Oxychalcogenides, Magnetic structure, Neutron diffraction, Oxychalcogenides, Neutron diffraction
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用中子繞射、交流磁化率、磁化強度和電阻率進行BiOCu0.94S樣品之磁性及電性研究。樣品BiOCu0.94S的晶體結構為方P4/nmm對稱,室溫下晶格常數為 a = b =3.8645(1)和c=8.5493(3)。四方晶系的BiOCu0.94S原子結構包括BiO層以及CuS層,且層與層之間藉由弱離子鍵連接。在T=250 K以下銅的自旋以鐵磁性排列。反鐵磁性在低於180 K時始發展,同時發生晶格常數的激烈變化。傾斜鐵磁自旋在低溫下飽和磁矩大小為<μZ> =0.61 μB。在磁有序態下的電傳導可以用三維不定域跳躍傳導來描述。外加磁場可以有效地減少跳躍傳導之能障。當溫度高於 250 K,銅自旋方向進入無序態,此時電阻率隨溫度變化關係背離跳躍傳導的形式,而成為隨溫度的升高而變大,顯示出自旋與電荷之間的偶合。
    另外,我們也研究四方晶系BiOCu0.98Se的晶體結構和磁結構。銅的鐵磁性自旋有序於 TC =300K以下開始發展。在260 K以下單位晶格發生負的熱膨脹,並產生了傾斜鐵磁自旋排列,銅自旋在低溫之飽和磁矩大小為<μZ> =0.5μB。這些觀察到現象清楚地揭示了晶格與磁結構之間的相互作用,這些罕見現象背後的機制肯定是有趣的。


    The electrical and magnetic properties of slightly Cu-deficient BiOCu0.94S are investigated using neutron diffraction, ac magnetic susceptibility, magnetization and electric resistivity measurements. The sample BiOCu0.94S crystallizes into a tetragonal P4/nmm symmetry with cell parameters of a=b=3.8645(1) Å and c=8.5493(3) Å at 293 K. Tetragonal BiOCu0.94S consists of BiO and CuS layers that are interconnected through weak ionic bindings. The Cu spins order with a ferromagnetic arrangement below TC =250 K. An antiferromagnetic component develops below 180 K when the crystalline unit cell experiences a sharp thermal contraction upon cooling, resulting in a canted ferromagnetic spin arrangement at low temperatures with saturated magnetic moment <μZ> = 0.61μB. In the magnetically ordered state the electrical transport can be described by three-dimensional (3D) variable range hopping conduction. An applied magnetic field can effectively reduce the hopping barrier. Spin-charge couplings are clearly revealed as the resistivity departs from the hopping conduction to become increases with increasing temperature, when the Cu spins become disordered above 250 K.
    The crystalline and magnetic structures of tetragonal BiOCu0.98Se are also studied. The ferromagnetic ordering of Cu spins develops below TC = 300K. An antiferromagnetic component develops below 260 K when the crystalline unit cell experiences negative thermal expansion upon cooling resulting in a canted ferromagnetic spin arrangement for the Cu spins at low temperatures with a saturated magnetic moment <μZ> = 0.5μB. These observations clearly reveal the appearance of interplay between lattice and magnetic structures, which is rarely seen and the mechanism behind is certainly interesting.

    Table of Contents Abstract in English……………………i Abstract in Chinese……………………ii Dedication………………………………iii Acknowledgements………………………iv Table of Contents………………………vi List of Figures…………………………x List of Tables…………………………xiv Chapter 1 Introduction …………………………1 1.1 Scientific Background……………………1 1.2 Structure and physical properties of RFeAsO ………2 1.2.1 Crystalline structure ………………………3 1.2.2 Structural transition ……………………4 1.2.3 Phase diagram …………………………..5 1.2.4 Magnetic structure …………………………………6 1.2.5 Electrical and magnetic properties ……………7 1.3 Some properties of BiOCuX (X = S or Se)……………9 References ……………………………………………………11 Chapter 2 Experimental Methods ………………………………13 2.1 Sample preparation ………………………………………13 2.2 Sample characterization …………………………………13 2.2.1 X-ray diffraction ………………………………13 2.2.2 Energy-dispersive x-ray spectroscopy ………15 2.2.3 Neutron diffraction measurements …………17 2.3 Magnetic measurements ………………………………19 2.4 Transport measurements ……………………………21 2.4.1 Overview of resistivity option ………………21 2.4.2 Resistivity measurements ……………………23 References ……………………………………………………25 Chapter 3 Theoretical Backgrounds ……………………26 3.1 AC magnetic susceptibility …………………26 3.2 Magnetic properties of Materials …………………28 3.2.1 Spin (magnetic) order ………………30 3.2.1.1 Behavior of a substance in a magnetic field …30 3.2.1.2 Types of magnetic order………33 3.2.1.3 Exchange mechanisms…………34 3.2.2 Langevin theory of paramagnetism …36 3.2.3 Brillouin function …………………38 3.3 Hopping conduction …………………………42 3.3.1 Nearest-neighbor hopping …………………42 3.3.2 Variable range hopping ……………………42 3.4 Magnetoresistance ………………………45 3.5 Theory of diffraction ………………………45 3.5.1 Powder diffraction …………………48 3.6 X-ray diffraction ………………………49 3.7 Neutron diffraction ……………………………50 3.7.1 Nuclear neutron diffraction ………………53 3.7.2 Magnetic neutron diffraction ……………54 3.8 The Reitveld method ……………………………58 References ……………………………………………64 Chapter 4 Spin, charge and lattice couplings in Cu-deficient BiOCu0.94S ……66 4.1 Crystalline structure …………………66 4.2 Trends of structural parameters with temperature…71 4.2.1 Thermal variation of lattice parameters …71 4.2.2 Thermal variations of bond lengths and bond angles …………………73 4.2.3 Thermal variations of bond valance sum (BVS)…75 4.3 Magnetic properties ………………………………77 4.3.1 AC susceptibility, hysteresis loops and thermal variations of magnetization..77 4.3.2 Variations of magnetization with applied magnetic field …………………....80 4.4 Transport properties ……………………………82 4.4.1 Thermal variations of electrical resistivity …82 4.4.2 Thermal variations of magnetoresistance ……84 4.4.3 Field dependence of magnetoresistance ……86 4.5 Results of neutron diffraction ………………87 4.5.1 Order parameters ……………………………87 4.5.2 Magnetic structure …………………………90 4-5-3 Possible mechanisms ……………………91 4.6 Thermal variations of superexchange integral ………93 4.7 Conclusions………………………………94 References ……………………………………………96 Chapter 5 Spin, charge and lattice couplings in Cu-deficient BiOCu0.98Se…….....98 5.1 Introduction...…………………………………98 5.2 Sample fabrication and crystalline structure ………98 5.3 Thermal variation of lattice parameters ………104 5.4 Thermal variations of structural parameters ………106 5.5 Magnetic properties ……………………………108 5.5.1 AC susceptibility and thermal variations of magnetization………108 5.5.2 Variations of magnetization with applied magnetic field ………………….110 5.6 Transport properties ……………………….112 5.6.1 Thermal variations of resistivity ………112 5.6.1 Thermal variations of magnetoresistance …114 5.7 Results of neutron diffraction …………………115 5.7.1 Order parameters ……………………………115 5.7.2 Magnetic structure …………………………117 5.8 Thermal variations of superexchange integral………118 5.9 Conclusions ……………………………119 References ……………….120 Vita…………………………...122

    Chapter 1
    References
    1Y. Kamihara, T. Watanabe, M. Hirano & H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    2X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang, Nature (London) 453, 761 (2008).
    3G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 101, 057007 (2008).
    4G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).
    5Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X. -L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou and Z.-X Zhao, Europhys. Lett. 83, 17002 (2008).
    6P. Quebe, L. J. Terbüchte, and W. Jeitschko: J. Alloys Compd. 302, 70 (2000).
    7N. Qureshi, Y. Drees, J. Werner, S. Wurmehl, C. Hess, R. Klingeler, B. Büchner, M. T. Fernández-Díaz, and M. Braden, Phys. Rev. B 82, 144521 (2010).
    8J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang. Preprint at http://arxiv.org/abs/0803.3426v1 (2008).
    9C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
    10S. Margadonna, Y. Takabayashi, M. T. McDonald, M. Brunelli, G. Wu, R. H. Liu, X. H. Chen, and K. Prassides, arXiv:0806.3962.
    11Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008).
    12Chao Cao, P. J. Hirschfeld,1 and Hai-Ping Cheng, Phys. Rev. B 77, 220506 (2008).
    13F. J. Ma & Z. Y. Lu, Phys. Rev. B 78, 033111 (2008).
    14H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M. M. Korshunov, I. Eremin, S.-L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. 101 077005 (2008).
    15H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
    16A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V.A. Dolgikh and B. A. Popovkin, J. solid state chemistry 112, 189-191 (1994).
    17W. J. Zhu, Y. Z. Huang, C. Dong, Z. X. Zhao, Mater. Res. Bull. 29, 143 (1994).
    18T. ohtani, Y. Tachibana, Y. Fujii, J. Alloys compd. 262-263, 175 (1997).
    19P.S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L.G. Akselrud, B. A. Popovkin, J. solid state chem. 118, 74 (1995).
    20I. R. Shein and A. L. Ivanovskii, Solid State Commun. 150, 640 (2010).
    21A. Ubaldini, E. Giannini, C. Senatore, D. van der Marel, Physica C 470, s356 (2010).
    22Anand Pal, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 301 (2010).
    23L. Ortenzi, S.Biermann, O. K. Andersen, I. I. Mazin, and L.Boeri, Phys. Rev B 83, 100505(R) (2011).
    Chapter 2
    References
    1Energy Dispersive X-ray Microanalysis Hardware Explained, Oxford Instruments Analytical Technical Briefing.
    2K.-D. Liss, B. Hunter, M. Hagen, T. Noakes, S. Kennedy, Physica B 385–386 1010 (2006)
    3http://www.qdusa.com/sitedocs/productBrochures/mag3-07.pdf
    4http://www.qdusa.com/sitedocs/productBrochures/16TPPMS7.pdf
    5http://www.mrl.ucsb.edu/mrl/centralfacilities/chemistry/resPPMS.pdf
    Chapter 3
    References
    1R. W. Rollins, H. Küpfer, and W. Gey, J. Appl. Phys. 45, 5392 (1974).
    2http://www.qdusa.com/sitedocs/appNotes/ppms/1078-201.pdf
    3S. Elliot, The physics and chemistry of solids; Wiley: Chichester, 1998.
    4E.O. Wollan and W.C. Koehler, Phys. Rev., 100, 545 (1955).
    5J.B. Goodenough, Phys. Rev., 117, 1442 (1960).
    6P.W. Anderson, Phys. Rev., 79, 350 (1950).
    7K. H. J. Buschow and F. R. de Boer, Physics of magnetism and magnetic materials (Kluwer Academic publishers, 2004) Chap. 4.
    8Kazuo Morigaki, Physics of Amorphous Semiconductors (World Scientific 1999) Chap. 7.
    9N. F. Mott and E. A. Davis, Electronic Processes in Non-CrystallineMaterials, 2th Ed., Chap. 2, (Clarendon press, Oxford, 1979).
    10W. Massa, Crystal structure determination; Springer-Verlag: Berlin, 2000.
    11G.E. Bacon: Neutron Diffraction, University of Sheffield, Oxford Press, 1975.
    12S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1 (Clarendon press, Oxford, 1984).
    13G. L. Squires, Introduction of the Theory of Thermal Neutron Scattering (Cambridge University Press, Cambridge, 1978).
    14A. C. Larson and R. B. von Dreele, GSAS Manual, p134.
    15http://www.ncnr.nist.gov/instruments/bt1/neutron.html.
    16R.P.O. Y. A. Izyumov, Magnetic Neutron Diffraction; Plenum Press: New York, 1970.
    17H.M. Rietveld, Acta Cryst., 22, 151 (1967).
    18H.M. Rietveld, J. Appl. Cryst., 2, 65 (1969).
    19R.A. Young, The Rietveld Method; Oxford University Press: Oxford, 1995.
    20 A.C. Larson and R.B.V. Dreele, General Structureal Analysis System (GSAS); Los
    Alamos National Laboratory: Los Alamos, 1990.
    21 P. Thompson, D.E. Cox and J.B. Hastings, J. Appl. Cryst., 20, 79 (1987).
    22B. H. Toby, J. Appl. Cryst. 34, 210-213, (2001).
    Chapter 4
    References
    1A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM. 1990.
    2H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
    3I. R. Shein and A. L. Ivanovskii, Solid State Commun. 150, 640 (2010).
    4Anand Pal, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 301 (2010).
    5H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
    6A. Ubaldini, E. Giannini, C. Senatore, D. van der Marel, Physica C 470, s356 (2010).
    7A. M. Kusianova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, A. V. Dolgikh, and B. A. Popovkin, J. Solid State Chem. 112, 189 (1994).
    8W. C. Sheets, E. S. Stampler, H. Kabbour, M. I. Bertoni, L. Cario, T. O. Mason, T. J. Marks, and K. R. Poeppelmeier, Inorg. Chem. 46, 10741 (2007).
    9C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
    10J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nature Mater. 7, 953 (2008).
    11Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008).
    12J. Zhao, Q. Huang, C. de la Cruz, J. W. Lynn, M. D. Lumsden, Z. A. Ren, J. Yang, X. Shen, X. Dong, Z. Zhao, and P. Dai, Phys. Rev. B 78, 132504 (2008).
    13S. Margadonna, Y. Takabayashi, M. T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E. Suard, and K. Prassides, Chem. Commun. 2008, 5607 (2008).
    14F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).
    15S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).
    16C. L. Zhang, A. Ignatov, M. Vannucci, M. Croft, T. A. Tyson, D. Kwok, Z. Qin, S.-W. Cheong, preprint at <http://arxiv.org/abs/0808.2134 (2008).
    17I.D. Brown and D. Altermatt, Acta Cryst. B, 41, 244-247 (1985).
    18I.D. Brown, J. Chem. Edu.,77, 1070 (2000).
    19M. O''Keeffe and A. Navrotsky, Structure and bonding in crystals; Academic Press Inc.: New York, 1981.
    20J. A. Alonso, M T Casais, M. J. Martínez-Lope, J. L. Martínez and M. T. Fernández-Díazz,
    J. Phys.: Condens. Matter 9, 8515–8526 (1997).
    21A. Salinas-Sanchez, J. L. Garcia-Monoz, J.Rodrigues-Carvajal, and R.Saez-Puche, J.Solid
    State Chem. 100, 201-211 (1992).
    22For example, see A. Isihara, Condensed Matter Physics. (Oxford Univ. Press, NY, 1991), pp.157.
    23C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
    24J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nature Mater. 7, 953 (2008).
    25I. I. Mazin, preprint at <http://arxiv.org/abs/1001.2332>
    26 L. E. Gontchar, A. E. Nikiforov, Phys. Rev. B. 66, 014437 (2002).
    27E. Gontchar, A. E. Nikiforov, S. E. Popov, J. Magn. Magn. Mater. 223, 175 (2001).
    28 J. Kanamori, J. Appl. Phys. 31, 14S (1960).
    Chapter 5
    References
    1Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    2H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature (London) 453, 376 (2008).
    3T. ohtani, Y. Tachibana, Y. Fujii, J. Alloys compd. 262-263, 175 (1997).
    4P.S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L.G. Akselrud, B. A. Popovkin, J. solid state chem. 118, 74 (1995).
    5H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
    6L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).
    7A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM. 1990.
    8H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
    9A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh and B. A. Popovkin, J. Solid state Chem.112, 189-191 (1994).
    10Evan S. Stampler, William C. Sheets, Mariana I. Bertoni, Wilfrid Prellier, Thomas O. Mason and Kenneth R. Poeppelmeier, Inorg. Chem. 47, 10009 (2008).
    11J.E. Orgel, J. Chem. Soc.1959, 3815 (1959).
    12F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed. (John Wiley: New York, 1980; p 327).
    13For example, see A. Isihara, Condensed Matter Physics. (Oxford Univ. Press, NY, 1991), pp.157.
    14 L. E. Gontchar, A. E. Nikiforov, Phys. Rev. B. 66, 014437 (2002).
    15E. Gontchar, A. E. Nikiforov, S. E. Popov, J. Magn. Magn. Mater. 223, 175 (2001).
    16J. Kanamori, J. Appl. Phys. 31, 14S (1960).

    QR CODE
    :::