| 研究生: |
宋堯正 Yao-cheng Sung |
|---|---|
| 論文名稱: |
資料採礦分析法於解析客訴不良品之應用 - 以TFT-LCD製造廠某C公司為例 |
| 指導教授: |
何應欽
Ying-Chin Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所在職專班 Executive Master of Industrial Management |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 線缺陷解析 、資料採礦 、決策樹 |
| 外文關鍵詞: | Line Defect analytical, Data Mining, Decision Tree |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面板製造商提供品質良好的產品給客戶是最基本的服務,因此當客戶發現品質不良產品時,客戶會要求製造商能在更短的時間內找出客退不良品品質異常的原因並要有解決的方案,而負責找出產品品質異常原因就是「解析」的工作,雖然各種品質分析手法,如魚骨圖、5Why分析…等的運用在製造業提升品質已相當普遍,但對於如何提升「解析作業」的效率來說並無特別的幫助,而解析的效率是靠經驗累積來增加的,但人的經驗傳承終究會讓原先累積的解析知識所遺漏,對提升解析效率是不利的。
資料採礦(Data Mining)是利用電腦從一大堆的資料中尋找出特定的模式或有關聯的資訊,這一些資訊可以輔助決策者做出重要的判斷,因此對於品質不良產品解析的作業應可利用此方式來增加效率。
本研究乃藉由個案公司客退車用面板線缺陷的(Line Defect)資料,利用資料採礦相關手法,探討此一手法是否能有效的幫助解析作業提高效率,此一新的模式可否運用於客退產品的解析作業,所得結論如下:
1.資料採礦所分析出來的線缺陷解析規則對發生異常責任單位判定是可信的,因而客退產品解析作業可利用此一模式增加解析效率。
2.資料採礦分析前需要先了解問題本質與運用方法,才能找出所需要之資訊幫助決策。
Panel manufacturers’ offering of high-quality products to customers is the most basic service. Thus, when customers obtain bad products, they will ask manufacturers to find the causes of abnormal products returned in shorter time and have the solutions. “Analysis” is adopted to find the causes of abnormal product quality. Although various quality analysis techniques, such as Fishbone Diagram and 5Why Analysis, are commonly applied to upgrading of quality in manufacturing industry, they do not significantly enhance the efficiency of “analysis” which relies on cumulative experiences. However, people’s inheritance of experience will be neglected by the original cumulative analytical knowledge and it will not enhance analytical efficiency.
Data Mining means to find specific models or related information from great amount of data by computers. The information helps decision makers to have significant judgment. Thus, efficiency of analysis on bad products can be reinforced by this method.
This study focuses on data of automobile panel “Line Defect” returned of case company and by Data Mining, it tries to find if the technique can effectively help enhance efficiency of analysis and if the new model can be applied to analysis of returned products. The conclusions are below:
1.Line Defect analytical rules by Data Mining are reliable to judge the units of abnormality. Thus, efficiency of analysis on returned products can be enhanced by this model.
2.Before Data Mining analysis, it must recognize the essence of the problems and the technique applied in order to find the information needed for decision making.
中文部分
1.尹相志(2003),SQL2000 Analysis Service 資料採礦服務,台北:維科圖書有限公司。
2.李俞潤(2005),工廠分析及生產線改善—以晶圓再生廠為例,清華大學工業工程與工程管理研究所碩士論文,新竹。
3.朱芬瑤(2005),探討血液透析之病患安全品質—使用根本原因分析,中山大學醫務管理研究所碩士論文,高雄。
4.吳明雄(1996),腦力激盪數應用在技術創作教學之探討,現代開放教育,(85)01,257-271。
5.洪瑜君(2006),以資料探勘技術識別造成彩色濾光片製程缺陷之群聚現象,成功大學工業與資訊管理學系專班論文,台南。
6.高廣權(2008),航空發動機減速組齒輪箱失效調查與分析研究,成功大學工程管理研究所碩士論文,台南。
7.施明欣、陳正芳(2007),應用知識管理於IC封裝業客訴8D Report案件之探討,品質月刊,43(2),42-46。
8.陳啟政、林敬堯與黃明弘(2008),以聲音VOC與COPQ分析於界定企業核心流程之研究,致遠資管學刊,2(1),17-35。
9.陳銀鎮(2010),運用8D改善程序與FMEA於COG液晶顯示器之電蝕改善研究,逢甲大學工業工程與系統管理研究所碩士論文,台中。
10.莊智偉(2007),液晶面板廠機台異常分析應用資料採礦之研究,輔仁大學應用統計學研究所碩士論文,台北。
11.彭建文(2009),問題診斷技術—3-Leddge-5-Why分析,品質月刊,45(7),47-49。
12.葉忠、施明欣、童世豪與楊喻萍(2005),8D改善的程序與應用—以半導體封裝為例,品質月刊,41(12),42-51。
13.楊玉鳳(2006),從豐田公司5Why看國內企業流程優化,百度文庫,Retrieved January 10,2013,取自: http://wendang.baidu.com/view/69779a325a8102d276a22f17.html。
14.楊平吉 譯(1992),腦力激盪法會議術,台北,臺華工商圖書出版公司。
15.謝宗霖(2007),資料探勘於半導體測試工程之應用,高雄第一科技大學資訊管理研究所碩士論文,高雄。
16.廖述賢(2007),資訊管理,台北市:雙葉書廊有限公司。
17.羅宜美、黃勝延與曹式有(2007),改進魚骨圖在生產管理中的應用,工業工程,10(2),138-141。
英文部分
1.Agrawal, R., Imilienski, T., & Swami, A. (1993). Mining association rules between sets of item in large database. Proceedings of the ACM SIGMOD International Conference on Management of Data, 22(2), 207-216.
2.Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Proceedings of the 20th International Conference on Very Large Databases, Santiago.
3.Elmasri, R., & Navathe, S. (2000). Fundamentals of Database Systems (3rd ed.). Boston: Addison-Wesley.
4.Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8(2), 87-102.
5.Fayyad, U. M., & Stolorz, P. (1997). Data Mining and KDD: Promise and challenges. Further Generation Computer System, 13, 99-115.
6.Green, D. W. (1988). Problem-solving: Representation and discovery. New York: Routledge, Chapman & Hall.
7.Han, J., & Kamber, M. (2001). Data Mining: Concepts and Techniques. Massachusetts: Morgan Kaufmann Publishers.
8.Ishikawa, K. (1990). Introduction to Quality Control. London: Chapman & Hall.
9.Liker, K. J. (2003). The Toyota way:14 Management Principles from The World’s Greatest Manufacturer. Michigan: McGraw-Hill Education.
10.Roiger, J. R., & Geatz, W. M. (2003). Data Mining: A Tutorial-Based Primer (1st ed.). Boston: Addison Wesley.
11.Wang, Y. F., Chung, Y. L., Hsu, M. H. & Keh, H. C. (2004). A personalized recommender system for the cosmetic business. Expert Systems With Applications, 26(3), 427-434.