| 研究生: |
曾俊傑 Jun-Jie Tzeng |
|---|---|
| 論文名稱: |
具責任週期偵測器之電壓式直流對直流降壓轉換器 A Voltage Mode DC-DC Buck Converter with Duty Cycle Detector |
| 指導教授: |
鄭國興
Kuo-Hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 直流對直流轉換器 、停滯時間偵測器 、責任週期偵測器 、零電流偵測器 |
| 外文關鍵詞: | DC-DC Converter, Dead Time Detector, Duty Cycle Detector, Zero Current Detector |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出的具責任週期偵測器之電壓式直流對直流降壓轉換器,為了大範圍負載電流使用時穩定度的考量,選擇電壓模式控制做為回授機制,且將PID補償器整合至晶片中,減少被動元件的數量,以利可攜式電子產品設計輕薄化。利用架構簡單且低功率的責任週期偵測器,取代複雜且高功率的電感電流偵測架構,來偵測極輕負載時的負載電流資訊,當系統操作在極輕負載時,降低系統操作頻率,以減少切換消耗與緩衝器的功率。利用零電流偵測器避免輕負載時,因為電感慣性所產生的逆電流,減少輕負載時的導通消耗,並利用停滯時間偵測器來優化控制訊號的停滯時間,減少重負載時停滯時間所造成的功率消耗,提升系統重負載的轉換效能。
此具責任週期偵測器之電壓式直流對直流降壓轉換器的電路設計是以0.18 um 3.3V互補式金氧半製程來實現,此晶片的工作電壓範圍為2.7 V到4.2 V,輸出電壓為1 V,操作頻率為0.77 MHz到1.44 MHz,負載電流範圍為25 mA到1 A,及轉換效能為88.87 %,線性調節度與負載調節度分別為6.67 mV/V與1.02 mV/A,晶片面積為1.3225 mm2。
The proposed buck converter with duty cycle detector uses the voltage mode control as the feedback loop for system stability. The PID compensator integrated into the chip to reduce the number of passive components. It is good to portable electronic devices design thinness and lightweight. With duty cycle detector, proposed buck converter can detect the load current information to slow down the system operating frequency for reducing power consumption in very light load. The zero current detector prevents the inverse current, and reduces the conduction loss in light load. The dead time detector is used to optimize the dead time of control signal. The efficiency of system can be improved.
This buck converter has been fabricated with 0.18 um 3.3 V CMOS process. In the proposed buck converter, the operating voltage is from 2.7 V to 4.2 V, the output voltage is 1 V, the operating frequency is from 0.77 MHz to 1.44 MHz, the load current is from 25 mA to 1 A, and the peak efficiency is 88.87 %. The line regulation and load regulation are 6.67 mV/V and 1.02 mV/A, respectively. The chip area is 1.3225 mm2.
[1] Texas Instruments, “Power Management Guide,” 2015.
[2] 李玗家, “應用於動態電壓調整之高轉換效能電流偵測與輸出漣波電壓控制降壓穩壓器,” 碩士論文, 國立中央大學, 2009
[3] 陳建成, “高轉換效能電流模式控制之降壓式電源轉換器,” 碩士論文, 國立中央大學, 2010
[4] G. A. Rincon-Mora and P. E. Allen, “A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998.
[5] P. Favrat, P. Deval, and M. J. Declercq, “A High-Efficiency CMOS Voltage Doubler,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 410–416, Mar. 1998.
[6] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed. Kluwer Academic Publishers, 2001.
[7] H. P. Forghani-Zadeh and G. A. Rincon-Mora, “Current-Sensing Techniques for DC-DC Converters,” in Proc. Midwest Symp. Circuits and Systems, Aug. 2002, pp. 577–580.
[8] R. B. Ridley, “A New, Continuous-Time Model for Current-Mode Control,” IEEE Trans. Power Electron., vol. 6, no. 2, pp. 271–280, Apr. 1991.
[9] D. Jauregui, B. Wang, and R. Chen, “Power Loss Calculation With Common Source Inductance Consideration for Synchronous Buck Converters,” Texas Instruments, 2015.
[10] J. Depew, “Efficiency Analysis of a Synchronous Buck Converter using Microsoft® Office® Excel®-Based Loss Calculator,” Microchip Technology Inc., 2012.
[11] A. M. Rahimi, P. Parto, and P. Asadi, “Compensator Design Procedure for Buck Converter with Voltage-Mode Error-Amplifier ,” International Rectifier, 2008
[12] M. P. Chan and P. K. T. Mok, “On-Chip Digital Inductor Current Sensor for Monolithic Digitally Controlled DC-DC Converter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 5, pp. 1232–1240, May 2013.
[13] 梁適安, 交換式電源供給器之理論與實務設計, 全華圖書, 2011
[14] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. Sakui, “A CMOS Bandgap Reference Circuit with Sub-1-V Operation,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 670–674, May 1999.
[15] B. Razavi, Design of Analog CMOS Integrated Circuits, Ed. New York: McGraw-Hill, 2001.
[16] D. J. Allstot, “A Precision Variable-Supply CMOS Comparator,” IEEE J. Solid-State Circuits, vol. 17, no. 12, pp. 1080–1087, Dec.1982.
[17] Y. Liu, C. Zhan, L. Cheng, and W.-H. Ki, “A 10/30 MHz PWM Buck Converter with an Accuracy-Improved Ramp Generator,” in Proc. IEEE Asia Pacific Conf. Circuits Syst., Dec. 2012, pp. 420–423.
[18] S. Zhen, B. Zhang, P. Luo, K. Yang, X. Zhu, and J. Li, “A High Efficiency Synchronous Buck Converter with Adaptive Dead Time Control for Dynamic Voltage Scaling Applications, ” in Proc. VLSI and System-on-Chip, Oct. 2011, pp. 43–48.
[19] T. Y. Man, P. K. T. Mok, and M. J. Chan, “An Auto-Selectable-Frequency Pulse-Width Modulator for Buck Converters with Improved Light-Load Efficiency,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2008, pp. 440–626
[20] T. J. Tseng, C. H. Wu, and L. R. Chang-Chien, “Fast Transient Voltage-Mode Buck Regulator Applying Ramp Signal with a Variable DC-Offset Scheme,” IET Power Electron., vol. 5, Iss. 8, pp. 1408–1417, May. 2012.
[21] M. P. Chan and P. K. T. Mok, “A Monolithic Digital Ripple-Based Adaptive-Off-Time DC-DC Converter with a Digital Inductor Current Sensor,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1837–1847, Aug. 2014.
[22] Y. S. Hwang, Y. B. Chang, and J. J. Chen, “A High-Efficiency Fast-Transient-Response Buck Converter with Analog Voltage Dynamic Estimation Techniques,” IEEE Trans. Power Electron., vol. 30, no.7, pp. 3720–3730, Jul. 2015.
[23] 柯欣欣, “使用高精準度電流偵測技巧之高轉換效能同步互補式金氧半降壓切換式穩壓器,” 碩士論文, 國立中央大學, 2007
[24] J. A. A. Qahouq, O. Abdel-Rahman, L. Huang, and I. Batarseh, “On Load Adaptive Control of Voltage Regulators for Power Managed Loads: Control schemes to improve converter efficiency and performance,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1806–1819, Sep. 2007.