| 研究生: |
任永昌 Yung-Chang Jen |
|---|---|
| 論文名稱: |
發光二極體航標燈之研究 The Study of LED Marine Beacons |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 發光二極體 、航標燈 |
| 外文關鍵詞: | LED, Marine Beacon |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用中場擬合法建立光源模型,並利用此光源模型分別設計出兩款航標燈用之透鏡,光源分別為砲彈型 LED 以及高功率 LED。在透鏡設計上,我們成功地將光源水平維度的光發散開以及垂直維度的光收斂到 8 至 10 度,在光源為砲彈型 LED 的案子中,我們使用單一款透鏡之設計即可應用在四種不同顏色的光源上,分別為紅光、黃光、綠光及白光,且應用的航標燈之光強度可以達到 5 海浬之規範要求、色座標量測亦可以符合國際航標協會的規範;在光源為高功率 LED 的案子中,我們設計一款具有特殊結構表面的 TIR Lens 來做為航標燈所使用之透鏡,此透鏡成功地將水平維度發散至 68 度以及垂直維度控制在 8 度。於模擬中,此款具有特殊結構表面的 TIR Lens 透鏡之光學效率為 84.2%。在距離 5 公尺處且長為 10 公尺、寬為 0.875 公尺的面積為目標面時,其光學利用率(OUF)可達到 63.5%。
In this thesis, we use the mid-field algorithm to build the light source model. Based on the light source model, we respectively design the lenses for two marine beacons. 5 LED lamps and high power LED are selected as our light sources. By the process of our lens design, we successfully keep the divergence angle of the light source to diverge in the horizontal direction and converge to 8-10 degrees in the vertical direction.
In the project of marine beacon using 5 LED lamp, we design a specific lens to be suitable for different light sources which colors are red, yellow, green, and white. Besides, by our design, the luminous intensity of the marine beacon using 5Φ LED lamp can achieve to the IALA recommendation’s requirement of 5 nautical miles. The measurement of color coordinates can also fit the IALA recommendation’s requirement.
In the project of marine beacon using high power LED, we design a specific surface-structured TIR lens into the marine beacon. By the surface-structured TIR lens, we successfully keep the divergence angle of the high power LED to diverge to 68 degrees in the horizontal direction and converge to 8 degrees in the vertical direction. According to the simulation results, the optical efficiency of the surface-structured TIR lens is 84.2 %. Under a distance of 5 m, the optical utilization factor is 63.5 % when the area of illuminated region is 10 m * 0.875 m.
[1]A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
[2]D. A. Steigerwald, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-312 (2002).
[3]E. F. Schubert and J. K. Kim, “Solid-state light sources be coming smart,” Science 308, 1274-1278 (2005).
[4]N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination applications,” Proc. SPIE 3938, 240-248 (2000).
[5]F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting application,” Proc. SPIE 5941, 594105 (2005).
[6]International Energy Agency, Light’s Labour’s Lost :policies for Energy-efficient Lighting (OECD/IEA, Paris, 2006).
[7]H. J. Round, “A note on carborundum,” Electrical World 49, 309 (1907).
[8]H. J. Nick and S. F. Bevacqua, “Coherent (visible) light emission from Ga (As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[9]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986).
[10]Y. Koide, N. Itoh, K. Itoh, N.Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/-Al2O3 heteroepitaxial growth by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 11561161 (1988).
[11]I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE,” Inst. Phys. Conf. Der. 91, 633-636 (1988).
[12]S. Nakamura, T. Mukai, M. Senoh, and N. Iwas, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. Appl. Phys. 31, L139-L142 (1992).
[13]S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-GaN/n-GaN double-hetero structure blue – light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8-L11 (1993).
[14]S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-hetero structure violet light-emitting diodes,” Appl. Phys. 62, 2390-2392 (1993).
[15]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U. S. Patent, US 5998925 (1999).
[16]S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
[17]孫慶成,LED的效率極限與照明光學設計的極致,LED固態照明研討會論文集,中華民國九十八年。
[18]Vega, Inc., http://www.vega.co.nz/.
[19]Carmanah, Inc., http://carmanah.com/.
[20]IALA, http://www.iala-aism.org/.
[21]J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE PRESS, Washington, 2009).
[22]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang,“ Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[23]W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572-7577 (2007).
[24]孫慶成,光電科技概論,全華圖書公司,第二版,中華民國一零三年。
[25]C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918-13927 (2009).
[26]I. Moreno, C. C. Sun, and R. Ivanov, “Far-field condition for light-emitting diode arrays,” Appl. Opt. 48, 1190-1197 (2009).
[27]台灣交通部航港局,http://www.motcmpb.gov.tw/MOTCMPBWeb/ wSite/ct?xItem=10455&ctNode=493&mp=1.
[28]IALA, Recommendation E-200-1 on Marine Signal Lights Part 1 – Colours Edition 1 (2008).
[29]IALA, Recommendations for the colours of signal on aids-to-navigation (1977).
[30]IALA, Recommendation E-200-2 on Marine Signal Lights Part 2 – Calculation, Definition and Notation of Luminous Range Edition 1 (2008).
[31]IALA, Recommendation E-200-3 on Marine Signal Lights Part 3 – Measurement Edition 1 (2008).
[32]興華電子,http://www.csbright.com/about.aspx?lang=ch.
[33]T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 49, 12-20 (2010).
[34]Breault Research Organization, Inc., http://www.breault.com/index.php.
[35]N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341 (1949).
[36]W. B. Joyce, R. Z. Bachrach, R. W. Dixon, and D. A. Sealer, “Geometrical properties of random particles and the extraction of photons from electroluminescent diodes,” J. Appl. Phys. 45, 2229-2253 (1974).
[37]D. Z. Y. Ting and T. C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[38]CREE XPG LED, http://www.cree.com/LED-Components-and-Modules/ Produ cts/XLamp/Discrete-Directional/XLamp-XPG.
[39]CREE XP-G2 LED, http://www.cree.com/LED-Components-and-Modules/Pro ducts/XLamp/Discrete-Directional/XLamp-XPG2.