| 研究生: |
廖君宇 Chun-Yu Liao |
|---|---|
| 論文名稱: |
俱螢光反應之生物感測晶片研發與在人體血清白蛋白應用 The Research of Fluorescence Reaction Bio-sensor and its Application in Human Serum Albumin |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 生物晶片 、螢光 、光檢測器 、人體血清白蛋白 、光電晶體 |
| 外文關鍵詞: | fluorescence, photonic, bio, sensor, HSA, phototransistor |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究整合半導體製程技術、以及化學生物標定法,來進行人體血清白蛋白之感測。感測器元件材料為砷化鎵,並使用半導體微影製程製作異質接面光電晶體,再利用生物螢光法做生物分子標記。其原理乃利用標記後化合物躍昇至激發態的螢光為生物訊號,對人體血清白蛋白進行感測。
研究中分別對感測器之靈敏度及再現性作多次的測試分析,於再現性的表現上,在待測溶液位於相同濃度之感測結果,其標準差僅達3.39 × 10-9 A;而靈敏度的範圍,經由多次量測分析,在待測溶液濃度介於0.01 mg/mL ~ 0.07 mg/mL之間,其光電流變化大小呈現線性的結果。實驗中並將感測器與微流道系統結合做一完整的量測平台,對量測數據進行分析後得到為Y = 1.6 × 10-6 + 1.38 × 10-8X之關係式,其中的Y值為光電流的大小,單位是安培,X值為HSA溶液之濃度,單位為每微克/毫升。此關係式代表此感測器在HSA溶液濃度介於0.01 mg/mL ~ 0.07 mg/mL之間,濃度每增加1 μg/mL,其光電流的反應約會增加13.8 nA的大小。
In this research, we present bio-sensors fabricated by the semiconductor fabrication and biomark techniques for sensing of Human Serum Albumin (HSA). The GaAs was used as the sensing material to fabricate heterojunction phototransistor array as the sensing device, and the fluorescence phenomenon of the biomark compound was designed as the signal. By combining the sensing device and biomark, a biosensor for HSA detection is demonstrated.
Numerous of experiments were tested for the sensitivity and reproducibility of the fabricated sensors. For the reproducibility test, the conditions at the same concentration of HSA were taken for the detection, and the standard deviation of the results was only 3.39 × 10-9 A. And for the sensitivity test, the experiments showed that the sensor demonstrated a linear result in the increase of photo-induced current at the HSA solution concentration of between 0.01 mg/mL and 0.07 mg/mL. Moreover, a micro-flow system of integrating the sensor-array and feed-through setup was established, the experiments showed similar results to the single sensor. The results present a trend line of Y = 1.6 × 10-6 + 1.38 × 10-8X, where Y is the magnitude of photo-induced current, and X is the concentration of HSA solution. It shows that the magnitude of photo-induced current is increased by 13.8 nA when the concentration of HSA solution increases a microgram between 0.01 mg/mL to 0.07 mg/mL.
[1]陳壽椿, “化學晶片─微感測系統”, Chemistry (The Chinese Chem. SOC., Taipei) Vol. 59, No. 2, pp. 287-298, June 2001.
[2]生物感測器的研究現狀及應用, 中國報告大廳市場研究報告網, August 2007.
[3]P.N. Prasad, “Introduction to Biophotonics”, Wiley-Interscience, Chapter 9, 2003.
[4]Rosenberg A, “The Structure of Biological Science”, Cambridge University Press, 1985.
[5]Chin-I Lin, Wen-Ping Chu, K Abraham Joseph, Yu-Chi Wong, Chao-Kang Chang, and Yu Der Lee, “Molecularly Imprinted Polymeric Beads for Decaffeination”, Journal of Medical and Biological Engineering, Vol. 23, No. 2, pp. 53-56.
[6]Spichiger-Keller, U. E., “Chemical Sensors and Biosensors for Medical and Biological Applications”, WILEY-VCH.
[7]謝振傑, 物理雙月刊(廿八卷四期), August 2006.
[8]薛凱鴻, “The Research of Impedimetric Biosensors for Human Serum Albumin Detection”, 碩士論文, 2008.
[9]吳建德, “砷化鎵異質接面光電晶體應用於血清蛋白濃度偵測”, 碩士論文, 2008.
[10]董德國, 陳萬清, “光纖通訊”, 東華書局.
[11]Joseph H. Simmons and Kelly S. Potter, “Optical Materials”, San Diego Academic Press, 2000.
[12]A. H. Kitai, “Solid State Luminescence”, New York Chapman & Hall, 1993.
[13]Klaus D. Mielenz, “Optical Radiation Measurements”, New York Academic Press, 1982.
[14]B.M Hsu, C.P. Huang, Y.F. Hsu, G.Y. Jiang, and C.L. Hsu, “Evaluat ion of Two Concentration Methods For Detecting Giardia And Cryptosporidium In Water”, Wat.Res. Vol. 35, No. 2, pp. 419-424, 2001.
[15]Amy Dawn Watson and Gabor Patonay, “Binding studies of near infrared cyanine dyes with Human Serum Albumin and Poly-L-Lysine using optical spectroscopy methods” College of Arts and Sciences, Georgia State University, December 2007.
[16]Shailendra Bansropun, R. C. Woods, and John Stuart Roberts, “Evidence of Optical Gain Improvement in AlGaAs/GaAs Heterojunction Phototransistors Using an Emitter Shoulder Structure”, IEEE Transactions on Electron Devices, Vol. 48, No. 7, July 2001.
[17]HIROSHI ITO, TADAO ISHIBASHI, AND TAKAYUKI SUGETA, “Fabrication and Characterization of AlGaAs/GaAs Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. ED-34, No. 2, February 1987.
[18]Y.-S. Sohn and Y.T. Kim, “Field-effect-transistor type C-reactive protein sensor using cysteine-tagged protein G”, Electronics Letters, 31st, Vol. 44, No.16, July 2008.
[19]S. W. Tan, K. P. Liu, C. W. Liao, Y. S. Huang, W. C. Chen and H. H. Chen, “The Characteristics of Functional Phototransistors”, IEEE, 2006.
[20]Lin Luan, Randall D. Evans, Nan M. Jokerst, Fellow, IEEE, and Richard B. Fair, Fellow, IEEE, “Integrated Optical Sensor in a Digital Microfluidic Platform”, IEEE Sensors Journal, Vol. 8, No. 5, May 2008.
[21]Henri Guillemain, Muttukrishnan Rajarajan, Senior Member, IEEE, Tong Sun, Kenneth T. V. Grattan, Yu-Chen Lin, and Chao-Tsen Chen, “A Disposable Optical Fiber-Based Capillary Probe for Sensing Lead Ions”, IEEE Sensors Journal, Vol. 8, No. 10, October 2008.
[22]Yan Z, Xin C, Zheng H, Chunquan Z, Yifang C, Jiaxiong F, “Fabrication and characterization of a novel infrared photoconductive sensor in InAlAs/InGaAs heterojunction”, Solid-State Electronics, pp. 63–66, August 2007.
[23]Joon M S, Min-S Y, Ho T, “Development of a novel DNA chip based on a bipolar semiconductor microchip system”, Biosensors and Bioelectronics, 1447-1453, Jun. 2007.
[24]M. M. Mac Sweeney, C. Bertolino1, H. Berney and M. M. Sheehan, “Characterization and Optimization of an Optical DNA Hybridization Sensor for the Detection of Multi-Drug Resistant tuberculosis”, IEEE Annual International Conference, 2004.
[25]Y-J Chang, C-H Hu, C-Y Liao, C-C, “Fabrication of Protein Chip with Ni-Co Alloy Coated Surface”, IEEE Sensors, pp. 117-120, Oct. 2007.
[26]Vamsy P. Chodavarapu, Student Member, IEEE, Daniil O. Shubin, Rachel M. Bukowski, Albert H. Titus, Member, IEEE, Alexander N. Cartwright, Member, IEEE, and Frank V. Bright, “CMOS-Based Phase Fluorometric Oxygen Sensor System”, IEEE Transactions on Circuits and Systems—I: Regular Papers, Vol. 54, No. 1, January 2007.
[27]Philippe E. Michel, Giovanni C. Fiaccabrino, Nico F. de Rooij, Milena Koudelka-Hep, “Integrated sensor for continuous flow electrochemiluminescent measurements of codeine with different ruthenium complexes”, Analytica Chimica Acta, pp. 95-103, 1999.
[28]Ruth Shinar, Debju Ghosh, Bhaskar Choudhury, Max Noack, Vikram L. Dalal, and Joseph Shinar, “Luminescence-based oxygen sensor structurally integrated with an organic light-emitting device excitation source and an amorphous Si-based photodetector”, Journal of Non-Crystalline Solids, 2006.