| 研究生: |
蔡永興 Yung-hsing Tsai |
|---|---|
| 論文名稱: |
應用可撓式磁力輔助拋光工具之二維振動研究 Study of two-dimensional vibration using flexible magnetic-assisted polishing tool |
| 指導教授: |
顏炳華
Biing-hwa Yan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 不鏽鋼拋光 、振動輔助 、磁性磨料 、磁力研磨 、拋光墊拋光 |
| 外文關鍵詞: | stainless steel polishing, vibration-assisted, magnetic abrasive, magnetic abrasive finishing, polishing pad |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的振動輔助方式,多為平行或垂直於工件表面的單軸向往復振動機制,垂直工件表面的振動輔助機制易造成研磨刮痕加深,導致不易得到鏡面效果,而平行工件表面則易造成在同一表面出現重複研磨痕跡,造成表面研磨不均。
本研究突破以往的振動輔助機構設計限制,以二維度(X-Y平面)橢圓形振動方式輔助磁力研磨加工,其主要目的為利用磁刷旋轉運動與工件二維振動的相互作用,形成緻密十字交叉加工路徑,進而改善加工效率與提高工件的表面品質。研究中除了探討利用鋼砂混和SiC磨粒所組成之非結合式磁性磨粒搭配振動輔助之拋光法外,進一步配合羊毛氈拋光墊輔助,觀察其對於不鏽鋼試片表面粗糙度之改善情形以及SEM表面形貌變化。
經由田口驗證實驗可以得知,對於表面粗糙度的改善最佳參數組合為:振動平台X軸方向振動頻率1Hz、SiC重量2g、鋼砂重量3.5g、研磨液重量3g、振動平台轉速1500rpm、振動平台振幅0.9mm、鋼砂號數#120、磁極轉速550rpm(A2B2C2D3E3F3G3H2),並證明在磁力輔助二維振動拋光墊研磨加工最佳參數組合下,能於5分鐘內有效改善不鏽鋼表面粗糙度由Ra 0.14μm改善至0.03μm,改善率達78.57%。且表面粗糙度會隨著加工時間增加而降低,在研磨25分鐘後能達到Ra 0.02μm,表面改善率提高至85.71%。
進一步針對磨料比例進行實驗,得知機油重量固定為3g時,SiC粉末以及鑽石粉末各添加1g時所獲得的表面粗糙度值最好,可於5分鐘內將不鏽鋼表面粗糙度從原始值Ra 0.14μm改善至Ra 0.025μm,並於25分鐘時達到Ra 0.01μm,達到卓越的鏡面效果。利用此磨料對粗面不銹鋼做加工,可在5分鐘內將其表面粗糙度從原始值Ra 0.23μm改善至Ra 0.02μm,並於25分鐘時達到Ra 0.01μm,顯現出最佳磨料比例優良的表面粗糙度改善能力。
The normal vibration directions of vibration-assisted magnetic abrasive finishing are all parallel or perpendicular to the surface of workpiece. It’s shortcomings are easily lead to more scratches on the surface, and difficult to obtain mirror effect.
This study break through previous studies,design a mechanism of two-dimensional(XY plane) vibration assisted to magnetic abrasive finishing. In the study we will use the steel particles and SiC abrasive mixture composed of non-associative with a vibration-assisted magnetic abrasive finishing, then use the polishing pad with vibration-assisted, watch the SEM surface and surface roughness.
Taguchi experiment can verify that, for the improvement of surface roughness parameters for the best: X Axis Frequency 1Hz, SiC weight of 2g, Grit weight 3.5g, slurry weight 3g, vibration platform speed 1500rpm, Vibration Amplitude 0.9mm, Grit numbers # 120, pole speed of 550rpm(A2B2C2D3E3F3G3H2).And proved vibration assisted magnetic abrasive finishing method in the best parameter combinations, can effectively improve within 5 minutes of stainless steel surface roughness by the Ra0.14μm down to 0.03μm, to improve the rate of 78.57%, ground 25 minutes later more up to Ra0. 02μm, the surface to improve the rate increased to 85.71%.
Then study to abrasive ratio, we got when slurry weight 3g, increase SiC weight 1g and diamond powder 1g, the surface roughness will get better. Can effectively improve within 5 minutes of stainless steel surface roughness by the Ra0.14μm down to 0.025μm, ground 25 minutes later more up to Ra0. 01μm, and get outstanding results in mirror effect. Use this abrasive ratio to polishing the rough stainless steel,can effectively improve within 5 minutes of stainless steel surface roughness by the Ra0.23μm down to 0.02μm, ground 25 minutes later more up to Ra0. 01μm, Show the best abrasive ratio have excellent improve capacity in surface roughness.
[1] 黃孟祥,「磁氣研磨法於微細電極表面拋光技術之研究」,國立雲林科技大學,碩士論文,2000。
[2] 莊政儒,「磁力研磨法應用於方管內表面精磨之研究」,私立華梵大學,碩士論文,2002。
[3] S. Yin and T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, Vol. 44, NO.12-13, pp.1297-1303, 2004.
[4] 鄒艷華,進村武男,“永久磁石磁性粒子利用?面磁?取技術研究開?”,砥粒加工???誌, Vol. 51, No. 2, pp. 94-99, 2007。
[5] 夏目勝之,進村武男,“振動方式磁?研磨加工研磨速度研磨特性及?果”,砥粒加工???誌, Vol. 52, No. 9, pp. 531-536, 2008。
[6] 藤田秀樹,進村武男,“軸方向振動方式異形管?面磁?援用加工法?研究-異磁性粒子利用角管?面隅()部平滑化促進?果”,砥粒加工???誌, Vol. 52, No. 4, pp. 214-218, 2008。
[7] IT. Im, SD. Mun and SM. Oh, “Micro machining of an STS 304 bar by magnetic abrasive finishing”, Journal of Mechanical Science and Technology, 23, pp.1982-1988, 2009.
[8] 張榮顯,「磁力研磨加工應用於放電加工表面改善之研究」,國立中央大學,碩士論文,2001。
[9] VK. Jain, P. Kumar, PK. Behera and SC. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, WEAR, Vol.250, NO.1-12, pp.384-390, 2001.
[10] D. Wang, T. Shinmura, H. Yamaguchi, “STUDY OF MAGNETIC FIELD ASSISTED MECHANOCHEMICAL POLISHING PROCESS FOR INNER SURFACE OF SI3N4 CERAMIC COMPONENTS FINISHING CHARACTERISTICS UNDER WET FINISHING USING DISTILLED WATER”, INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, Vol.44, NO.14, pp.1547-1553, 2004.
[11] Y. Wang and DJ. Hu, “Study on the inner surface finishing of tubing by magnetic abrasive finishing”, INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, Vol.45, NO.1, pp.43-49, 2005.
[12] JD. Kim, IH. Noh, “Magnetic polishing of three dimensional die and mold surfaces”, The International Journal of Advanced Manufacturing Technology, Vol.33, pp.18-23, 2007.
[13] JS. Kwak, “Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet”, Journal of Machine Tools & Manufacture, Vol.49, pp.613-618, 2009.
[14] DK. Singh, VK. Jain, V. Raghuram and R. Komanduri, “Analysis of surfacetexture generated by a flexible magnetic abrasive brush”, WEAR, Vol.259, NO.7-12, pp.1254-1261, 2005.
[15] B. Karpuschewski, O. Byelyayev, V.S. Maiboroda, “Magneto-abrasive machining for the mechanical preparation of high-speed steel twist drills”, CIRP Annals - Manufacturing Technology, 58, pp.295-298, 2009.
[16] K. Shimada, Y. Wu and YC. Wong, “Effect of magnetic cluster and magnetic field on polishing using magnetic compond fluid”, JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, Vo.262, NO.2, pp. 242-247, 2003.
[17] K. Hanada, H. Yamaguchi and H. Zhou, “New spherical magnetic abrasives with carried diamond particles for internal finishing of capillary tubes”, DIAMOND AND RELATED MATERIALS, Vol.17, NO.7-10, pp. 1434-1437, 2008.
[18] T. Furuya, Y. Wu, M. Nomura, K. Shimada, K. Yamamoto, “Fundamental performance of magnetic compound fluid polishing liquid in contact-free polishing of metal surface” ,JOURNAL OF MATERIALS PROCESSING, Vol.201, NO.1-3, pp. 536-541, 2008.
[19] S. Singh, HS. Shan and P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, Vol.128, NO.1-3 , pp. 155-161, 2002.
[20] 鄭棕仁,「電解與磁力研磨之複合加工技術研究」,國立中央大學,碩士論文,2002。
[21] 偕義弘,「電解與磁力研磨之複合加工應用於內壁表面改善之研究」,國立中央大學,碩士論文,2003。
[22] H. Yamaguchi and T. Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system discussion of the characteristic abrasive behavior”, PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, Vol.24, NO.3, pp.237-244, 2000.
[23] T. Shinmura, E. Hatano and K. Takazawa, “Development of Plane Magnetic Abrasive Finishing Apparatus and its Finishing Performance”, J. OF JSPE(in Japanese), Vo1.52, No.6, pp.1080-1086, 1986.
[24] T. Shinmura, T. Aizawa, “Study on Internal Finishing of a Nonferromagnetic Tubing by Magnetic Abrasive Machining Process”, BULLETIN OF THE JAPAN SOCIETY OF PRECISION ENGINEERING, Vol.23, No.1, pp.37-41, 1989.
[25] 進村武男,“磁氣研磨法現狀課題”,機械工具,pp.16-21, 1996。
[26] 陳福春,PLC可程式控制器-原理與實習,五版,高立圖書有限公司,台北,2004。
[27] 顏嘉男,泛用伺服馬達應用技術,全華圖書有限公司,台北,2006。
[28] 李輝煌,田口方法-品質設計的原理與實務,三版,高立圖書有限公司,台北,2010。
[29] 林清田,「不鏽鋼SUS304磁力研磨拋光加工特性之研究」,國立中興大學,碩士論文,2004。
[30] T. Shinmura, K. Takazawa, E. Hatano, “Study on Magnetic Abrasive Finishing”, ANNALS OF THE CIRP, Vol.39, No.1, pp.325-328, 1990.
[31] 電機工程手冊編輯委員會,機械工程手冊2-鋼材料,五南圖書有限公司,2002。
[32] 林明獻,矽晶圓半導體材料技術,全華科技圖書有限公司,2000。
[33] 周展煌,「二維振動輔助磁力研磨之設備開發與其應用」,國立中央大學,碩士論文,2010。