| 研究生: |
許凱翔 Kae-shyang Sheu |
|---|---|
| 論文名稱: |
以數值模擬岩石節理面之剪力行為 |
| 指導教授: |
田永銘
Yong-ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | PFC2D 、岩石節理面 、直接剪力試驗 、破壞模式 |
| 外文關鍵詞: | PFC2D, rock joint, direct shear test, failure mode |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用PFC2D模擬岩石節理面承受直接剪力下之力學行為,節理面之幾何型態包括:不同粗糙角之規則節理面及Barton JRC不規則節理面;探討變因包括:不同正向應力、尺寸、微觀參數;觀察的項目包括:剪力阻抗與剪位移之關係、剪力強度參數、裂縫發展及破壞模態。在分析方面,本文之模擬結果分別與Patton (1966)及張文城(1988)之規則節理面模式及Barton (1977)不規則節理面模式進行比較。結果顯示:在高、低正向應力時,模擬結果符合Patton (1966)雙線性剪力強度模式及張文城(1988)剪力強度模式。在臨界正向應力時,張文城(1988)剪力強度模式與本文模擬結果相符。破壞模態之分布上,模式I破壞發生在低正向應力;模式III破壞發生在臨界正向應力;模式IV破壞發生在高正向應力。不規則節理面分析上使用Barton (1977)提出之剪力強度模式,在正向應力3MPa前,數值模擬結果與Barton (1977)預測值相當吻合;在高正向應力時(3MPa以上),此模式會高估節理面之剪力強度。不規則節理面的剪力強度並不隨著節理面尺寸增加而改變,與Ueng et al. (2010)、鄒岳展(2002)實驗觀察相似。
This paper used Particle Flow Code in 2 dimension (PFC2D) to simulate shear behaviors of rock joints under direct shear tests. Geometry of joints include (1) regular joints in different roughness angles and (2) irregular joints of Barton’s JRC profiles. Controlled variables involves different normal stresses, specimen sizes, and micro parameters. Shear resistance-shear displacement relation, shear strength parameters, crack propagation, and failure modes were observed in this paper. For regular joint models, the simulation results compared well with Patton (1966) and Chang (1988) shear strength models in higher and lower normal stresses, but only compared well with Chang (1988) in critical normal stresses. For irregular joint models, simulation results compared well with Barton (1977) estimation in low normal stresses (< 3MPa). In higher normal stresses (≧3MPa), Barton (1977) will overestimate this paper simulations. Three failure modes were observed in this paper, (1) Mode I, failure occurs in lower normal stress; (2) Mode III, failure occurs in critical normal stress; (3) Mode IV, failure occurs in higher normal stress. Scale effects were not be observed in this paper, as same as Ueng et al. (2010) and Zou (2002) experimental tests.
1. 李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立台灣大學土木研究所,臺北(2008)。
2. 林雅雯,「FLAC3D應用於岩石不連續面滑動之分析」,碩士論文,國立台北科技大學材料及資源工程系,臺北(2004)。
3. 洪如江,初等工程地質學大綱,財團法人地工技術研究發展基金會,臺北,第41-53頁(2011)。
4. 鄒岳展,「岩石節理面幾何變化對剪力強度之影響」,碩士論文,國立台灣大學土木研究所,臺北(2002)。
5. 張文城,「岩石節理面之粗糙度與其剪力強度之研究」,博士論文,國立台灣大學土木研究所,臺北(1988)。
6. 劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學土木工程學系,中壢(2013)。
7. 程泓皓,「以PFC2D模擬併構岩單壓強度與變形性」,碩士論文,國立中央大學土木工程學系,中壢(2014)。
8. ASTM, “Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances,” ASTM Standard D4543-08, ASTM International, West Conshohocken, PA(2008).
9. ASTM, “Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force1,” ASTM Standard D5607-08, ASTM International, West Conshohocken, PA(2008)
10. Bahaaddini, M., Sharrock G., and Hebblewhite, B.K., “Numerical direct shear tests to model the shear behaviour of rock joints,” International Journal of Rock Mechanics & Mining Sciences, Vol. 51, pp. 101-115 (2013).
11. Bandis, S., Lumsden, A.C., and Barton, N.R., “Experimental studies of scale effects on the shear behavior of rock joints,” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol. 18, pp. 1-21 (1981).
12. Barton, N., “Review of a new shear-strength criterion for rock joints,” Engineering Geology, Vol. 7, pp. 287-332 (1973).
13. Barton, N., and Choubey, V., “The shear strength in theory and practice,” International Journal of Rock Mechanics & Mining Sciences, Vol. 10,pp. 1-54 (1977).
14. Cundall, P.A., and Strack, O.D.L., “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65 (1979).
15. Cundall, Peter A. "Numerical experiments on rough joints in shear using a bonded particle model." Aspects of tectonic faulting. Springer Berlin Heidelberg,pp. 1-9 (2000).
16. Handanyan, J.M., ”The Role of Tension in Failure of Joined Rock”,Proceedings of Internation Symposium on Rock Joints, Leon, Norway, pp. 195-202 (1990)
17. ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
18. Itasca Consulting Group Inc., PFC2D (Particle flow code in 2 dimensions), Verson 4.0 (manual), Itasca Consulting Group Inc., Minneapolis, MN:ICG (2008).
19. Ladnyi, B., and Archambault, G., “Simulation of shear behavior of jointed rock mass,” 11th Rock Mechanics Symposium, chapter 7, pp. 105-125 (1969).
20. Ohnishi, Y., and Yoshinaka, R., “Shear strength scale effect and geometry of single and repeated rock joints,” 2nd Conference of Fractured and jointed rock masses , pp. 167-173 (1993).
21. Patton, F.D., “Multiple modes of shear failure in rock,” Proceedings of the 1st International Congress Rock Mechanics, pp. 509-515 (1966).
22. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for
rock,” International Journal of Rock Mechanics & Mining Sciences,
Vol. 41, pp. 1329–1346 (2004).
23. Park, J.W., and Song, J.J., “Numerical simulation of a direct shear test on a rock joint using a bonded-particle model,” International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 1315-1328 (2009).
24. Tse, R., and Curden, D.M., “Estimating joint roughness coefficients,” International Journal of Rock Mechanics & Mining Sciences, Vol. 16, pp. 303-307 (1979).
25. Ueng, T.S., Jou, Y.J., and Peng I.H., “Scale effect on shear strength of computer-aided-manufactured joints,” Journal of GeoEngineering, Vol. 5, pp. 29-37 (2010).