跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊弼友
bill young
論文名稱: PBT/GF於高應變率拉伸性質之穩健性分析
指導教授: 鄭銘章
Ming-Chang Jeng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 94
中文關鍵詞: 聚碳酸酯玻璃纖維高應變率
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以聚丁烯對苯二甲酸酯之短纖維強化複合材料為材料,採用田口實驗法進行最佳成型條件的預測,首先利用田口方法之L9直交表並配合四個射出成型製程的控制因子如:充填時間、融膠溫度、模具溫度及保壓壓力,以設計出九組實驗,並利用田口實驗法來評估所選擇的控制因子對於拉伸的抗拉強度和伸長率等機械性質的影響。最後以主成份分析法去探討多品質的特性問題,同時,配合電子掃描顯微鏡(SEM)觀察試片破斷面的型態,以了解PBT短纖維強化複合材料的破壞機構。主要研究結果如下:在高速變形的過程中,因為受到絕熱變形的影響,造成纖維在高溫時的斷裂,並且因為塑流應變的影響,造成應力值不升反降,且應變量增加。並得知在多品質的環境下,以主成份法分析,才得以得到最佳化的反應。


    總目錄 摘要 I 誌謝 II 總目錄 III 圖目錄 VI 表目錄 VIII 第一章 研究背景與目的 1 1-1 前言 1 1-2 文獻回顧 3 第二章 理論基礎 8 2-1 高分子塑性變形的特性與種類 8 2-1-1塑性變形的種類 8 2-1-2塑性變形特性 10 2-1-3 高分子材料降伏行為及大變形量下之特徵 10 2-2 強化塑膠複合材料 13 2-3射出成型加工法簡介 14 2-4 射出成型模擬分析: 17 2-5 品質工程(田口實驗設計) 17 2-5-1 品質損失函數(Loss Function Of Quality) 19 2-5-2 望目特性 20 2-5-3 望小特性 22 2-5-4 望大特性 24 2-5-5 直交表 25 2-6主成份分析法 33 第三章 實驗方法與步驟 37 3-1實驗設計的品質特性與控制因子的選擇 37 3-1-1 決定品質特性 37 3-1-2 控制因子與水準的選擇要求 37 3-2 實驗材料 39 3-3 模具設計 39 3-4 成型條件範圍之擬定 40 3-5 試片準備 40 3-6 試驗方法與使用設備 41 3-6-1 準靜態拉伸試驗 41 3-6-2 高應變率拉伸 41 第四章 結果與討論 48 4-1 P,AP方向的SEM破斷面結構 48 4-2 PBT/Wt 15%GF機械性質的比較 50 4-3 變異數分析(ANOVA) 53 4-3-1計算S/N回應表和回應圖、ANOVA表和主成份表 53 4-4 ANOVA表的計算 68 4-5 主成份分析法 75 4-6 綜合討論與結果 85 4-6-1準靜態的結果 85 4-6-2 15s-1的綜合結果 86 第五章 結果討論與未來研究方向與建議 88 5-1 結果討論 88 5-2 未來發展方向與建議 89 參考文獻 91

    參考文獻
    1. H. Kolsky, “An investigation of the mechanical properties of materials ay very high rates of loading,” Proceeding of the Royal Society of London B62, pp.676-700, 1949.
    2. C. J. Maiden and S.J. Green, “Compressive strain-rate tests on six selected materials at strain rates from 10-3 to 104 in/sec,” Transactions of the ASME, Journal of Applied Mechanics, pp.496-504, 1966.
    3. S. C. Chou, K. D. Robertson , J. H. Rainey, ”The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics,” Experimental Mechanics 13, pp.422-432, 1973.
    4. B. J. Briscoe, R. W. Nosker, “The flow stress of high density polyethylene at high rates of strain,” Polymer Communications 26, pp.307-308, 1985.
    5. S. M. Walley, J. E. Field, P. H. Pope, N. A. Safford, “A study of the rapid deformation behaviour of a range of polymers,” Philosophical Transactions of the royal Society of Lon-don 328, pp.1-33, 1989.
    6. N. N. Dioh, P. S. Leevers, J. G. Williams, “Thickness effects in split Hopkinson pressure bar tests,” Polymer 34, pp.4230-4234, 1993.
    7. G. T. Gray III, W. R. Blumenthal, C. P. Trujillo, R. W. Carpenter II, “Influence of temperature and strain rate on the mechanical behaviour of a range of Adiprene L-100,” Journal de Physique IV France, Colloq. C3 (DYMAT 97) 7 pp.523-528, 1997.
    8. W. Chen. X. Zhang, “Dynamic response of Epon 828/T-403 under multiaxial loading at various temperatures,” Transactions of the ASME, Journal of Engineering Materials and technology 119, pp.305-308, 1997.
    9. W. Chen and B. Zhou, “Constitutive behavior of Epon 828/T403 at various strain rates,” Mechanical of Time-Dependent Materials 2, pp.103-111, 1998.
    10. S. Keing, “Fiber Orientation Development in Molding of Polymer Composite,” Polymer Composites, Vol. 7, pp. 50-55, 1986.
    11. P. J. Hogg, “The Influence of Flow-induced Anisotropy on the Impact Behavior of Injection –moulded Short-fibre Composites,” Composities Science and technology, Vol. 29, pp.89-102, 1987.
    12. J.E. Stambuis, ” Mechanical Properties and Morphology of Polypropylene Composites. III. Short Glass Fiber Reinforced Elastomer Modified Polypropylene,” Polymer Composites, Vol. 9, pp.89-102, 1988.
    13. R. A. Fisher, “Statistical methods for Research Workers, Oliver and Boyd,” London, 1925.
    14. D. C. Montgomery, “Design and Analysis of Experiments, Wiley,Singapore,” 1991.
    15. 賀克勤,短纖維強化聚碳酸酯複合材料機械與磨耗特性之研究,博士論文,國立中央大學,民國86年。
    16. 何明雄,PC/ABS 合膠材料機械性質之研究張士行,博士論文,國立中央大學,民國89年。
    17. 張士行,田口實驗設計與灰色關聯分析法應用於製程最佳化設計之研究,博士論文,國立中央大學,民國88年。
    18. 鍾清章,品質工程中華民國品質管制學會,民國73年。
    19. 鄧聚龍,灰色系統理論教程,華中理工大學出版社,民國81年。
    20. I. M. Ward and D. W. Hadley, “An Introduction to the Mechanical Properties of Solid Polymers,” John Wiley & Sons, New York, pp.221, 1993.
    21. M. C. Boyce, David M. Parks, Ali S. Argon, “Large Inelastic Deformation of Glassy polymer. Part I: Rate dependent Constitutive Model,” Mechanics of Materials, Vol. 7, pp.15-33, 1988.
    22. A. M. Dekker and M. I. Isayev, "Injection and Compression Molding Fundamentals," New York, pp.264-273, 1987.
    23. P. Wippenbeck, "The Mould Filling Process Technical Requirements and Findings," pp.97-139, 1990.
    24. T. Matsuoka, J. Takabatake, Y. Inoue and H. Takahashi, "Prediction of Fiber Orientation in Injection Molding Parts of Short Fiber Reinforced Thermoplastics," Polymer Engineering and Science, Vol.30, pp.957-966, 1990.
    25. M. R. Kamal, E. Chu, P. G. Lafleur. and M. E. Ryan, "Computer Simulation of in Injection Mold Filling for Viscoelastic Melt with Fountain Flow," Polymer Engineering and Science, Vol. 26, pp.190-196, 1986.
    26. P. G. Lafleur. and M. R. Kamal, "A Structure Oriented Computer Simulation of the Injection Molding of Viscoelastic Crystalline Polymers PartⅠ: Model with Fountain Flow, Packing, Solidification," Polymer Engineering and Science, Vol.26, pp.92-102, 1986.
    27. H. Mavridis, A. N. Hrymak. and J. Vlachopoulos, "Finite Element Simulation of Fountain Flow in Injection Molding," Polymer Engineering and Science, Vol.26, pp.449-454, 1986.
    28. M. R. Kamal, S. K. Goyal and E. Chu, "Simulation of Injection Mold Filling of Viscoelastic Polymer with Fountain Flow," AICHE Journal, Vol.34, pp.94-106, 1988.
    29. R. E. Hayes, H. H. Dannelongue and P. A. Tanguy, "Numerical Simulation of Mold Filling in Reaction Injection Molding," Polymer Engineering and Science, Vol.31, pp.842-848, 1991.
    30. C. G. Gogos and C. F. Huang, "The Process of Cavity Filling Including the Fountain Flow in Injection Molding," Polymer Engineering and Science, Vol.26, pp.1457-1466, 1986.
    31. F. J. Perrett, D. D. Reible, and R. C. Mcilhenny, "Modeling Fountain Flow and Filling Front Shape in Reaction Injection Molding," Polymer Engineering and Science, Vol.33, pp.716-720, 1993.
    32."Standard Test Method for Tensile Properties of Plastics," Annual Book of ASTM Standards, D638-91.

    QR CODE
    :::