| 研究生: |
柯宏憲 Hong-hsien Ke |
|---|---|
| 論文名稱: |
氧硒化鋅合金的拉曼光譜研究 Raman spectroscopic analysis of ZnSeO alloys |
| 指導教授: |
徐子民
Tzu-min Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 拉曼光譜 、氧硒化鋅合金 |
| 外文關鍵詞: | ZnSeO alloys, Raman spectrum |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文所研究之氧硒化鋅合金,氧濃度分布於1.5%<x<11.6%。由光激發螢光光譜(PL)及壓電調製反射光譜(PzR)所量得之訊號能量位置隨著氧濃度增加的變化,符合能帶互斥理論,然而,高氧濃度樣品的XRD與PL訊號都有強度變弱且半高寬增加的現象,且高氧濃度樣品的PzR光譜並沒有觀察到微分訊號,這代表高氧濃度的氧硒化鋅晶格可能發生改變,因此本論文以激發波長為514.5nm與457.9nm的拉曼光譜,探討氧硒化鋅晶格隨著氧濃度上升發生的變化。透過類硒化鋅的LO聲子模態譜型分析得知,氧濃度小於2.7%的氧硒化鋅晶體,結晶品質是相當好的,當氧濃度大於5.3%以後,其應力已部分釋放,結晶品質會下降;而成分無序的程度隨著氧濃度的上升而增加,聲子相關長度減小,造成LO模態譜型的不對稱性增加。透過不同激發波長的拉曼光譜實驗得知,當雷射能量大於樣品能隙,滿足共振拉曼散射的條件時,多重LO聲子散射強度明顯增強。當氧濃度大於2.2%以後出現的OLVM1模態,隨著氧濃度的增加有藍移的趨勢。
The oxygen concentrations of ZnSe1-xOx alloys studied in this thesis are in the range of 1.5%<x<11.6%. The results of photoluminescence (PL) and piezoreflectance (PzR) indicate that the relationship between bandgap and oxygen composition can be well described in the framework of band anti-crossing model (BAC model). However, the full width of half maxima (FWHM) of signals observed in XRD and PL become broader and the intensities become weaker in the higher O concentration range. These results indicate that the crystal structures may have changed. Thus we investigated the crystal structure via Raman spectrum. We found the crystalline qualities are quite good in low O concentration range from the analysis of LOZnSe lineshape. And compositional disorder increases with O content which leads to the shortening of phonon correlation length and asymmetric broadening of LOZnSe lineshape. From excitation wavelength dependent Raman spectrum, we found the signal intensities of multi-phonon scattering increase when the excitation energy above the band gap, which is the condition of resonant Raman scattering. The OLVM1 mode appears when O concentration are higher than 2.2% and blueshifts with increasing of O concentration.
[1] C. V. Raman and K. S. Krishnan, “A new type of secondary radiation”, Nature (London) 121, 501-502 (1928)
[2] J. C. Phillips, Bonds and Bands in Semiconductors (Academic, New York, 1973)
[3] Y. Nabetani, T. Mukawa, Y. Ito, T. Kato, and T. Matsumoto, Appl. Phys. Lett. 83, 1148 (2003)
[4] W. Shan et al., Appl. Phys. Lett. 83, 299 (2003)
[5] Y. Nabetani et al., Mater. Sci. Semicond. Process. 6, 343 (2003)
[6] W. Shan et al., Phys. Rev. Lett. 82, 1221 (1999)
[7] J. Wu et al., Semicond. Sci. Technol. 17, 860 (2002)
[8] J. Wu et al.,Phys. Rev. B 65, 233210 (2002)
[9] W. Shan et al., J. Phys.: Condens. Matter 16, S3355-S3372 (2004)
[10] Qiang Xu et al., Compos. Mater.Sci. 44, 72 (2008)
[11] John P. Walter and Marvin L. Cohen, Phys. Rev. 183, 763 (1969)
[12] 陳星宏,氧硒化鋅薄膜之光學特性研究,國立中央大學 物理學系 碩士論文
[13] 賴麒文,氧硒化鋅合金的能隙結構,國立中央大學 物理學系 碩士論文
[14] A. A. Ashrafi et al., J. Cryst. Growth, 221, 435 (2000)
[15] P. Parayanthal and Fred H. Pollak, Phys. Rev. Lett., 52, 1822 (1984)
[16] R. Shuker and R. W. Gammon, Phys. Rev. Lett. 40, 826 (1982)
[17] H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981)
[18] D. E. Aspnes and J. E. Rowe, Phys. Rev. Lett., 27, 188 (1971)
[19] V. Swaminathan and A. T. Macrander: Materials Aspects of GaAs and InP Based Structures, p. 322
[20] F. H. Pollak, Semicond. Semimetals 32, 19 (1990)
[21] K. Hayashi et al, Jpn. J. Appl. Phys. 30, 501 (1991)
[22] B. Hennion et al, Phys. Lett. 36A, 376 (1971)
[23] A. Mascarenhas and M. J. Seong, Semicond. Sci. Technol. 17, 823 (2002)
[24] R. M. Martin and C. M. Varma, Phys. Rev. Lett. 26, 1241 (1971)
[25] J. F. Scott et al, Opt. Commun. 1, 397 (1970)
[26] F. H. Pollak, in Strained Layer Superlattices: Physics, volume edited by T. P. Pearsall, Semiconductors and Semimetals Vol. 32, series edited by R. K. Willardson and A. C. Beer (Academic, San Diego, 1990), p. 17.
[27] Sadao Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, p. 99