跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖家秀
Chia-Hsiu Liao
論文名稱: 具苯環及硫基官能基之中孔洞材料 SBA-1 的合成與鑑定
Synthesis and Characterization of Cubic Mesoporous Silicas SBA-1 with Phenyl and Thiol Functionalities
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 96
語文別: 中文
論文頁數: 160
中文關鍵詞: SBA-1中孔洞材料硫醇苯環
外文關鍵詞: mesoporous, SBA-1, phenyl, thiol
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為二個部份,第一部份是利用直接合成法,以PhTES (Phenyltriethoxysilane) 和 TEOS (Tetraethtyl orthosilicate) 為共同矽源,在酸性條件下合成具有苯環官能基的中孔洞材 SBA-1。研究發現苯環官能基化的中孔洞材料SBA-1,其PhTES含量最大可達33 mole % ,且結構仍相當良好。研究發現有效控制反應溫度、組成、界面活性劑總類對於合成具有規則立方排列、高表面積的中孔洞材料 Ph-SBA-1 是很重要的因素。利用固態核磁共振儀及其二維的 HETCOR、Exchange 技術來探測矽酸鹽類之間以及與界面活性劑在空間中的相對關係,由二維的13C{1H} HETCOR 和 1H-1H exchange 研究發現Ph-SBA-1 材料中的苯環官能基,和界面活性劑 CTMABr 的頭基部分 -N-(CH3)3 較鄰近,由二維的 29Si{1H} HETCOR 研究可得知植入於中孔洞材料中的苯環官能基分怖情形,是苯環官能基 (T group) 會和孔洞矽壁中的 Q4 group 較 Q3 group 鄰近。
    第二部份為中孔洞材料 SBA-1 的雙官能基化的研究,是利用直接合成法,以MPTMS ((3-Mercaptopropyl)trimethoxysilane) 和 BTEB (1,4-Bis(triethoxysilyl) benzene) 為共同矽源,合成具有苯環官能基和硫醇官能基的中孔洞材料 SH-BTEB-SBA-1。利用 XRD、等溫氮氣吸脫附及 13C 、29Si MAS NMR 來研究有機官能基對孔洞結構的影響。將 SH-BTEB-SBA-1 應用於吸附金屬上,發現對於汞、銅、銀離子都有相當良好的吸附效果,並發現吸附金屬後所測得的13C MAS NMR 光譜有明顯的變化,這提供了一種直接檢測固態樣品中金屬的方法。


    The thesis is divided into two parts. In part one, well-ordered mesoporous silicas SBA-1 (cubic Pm3n symmetry) functionalized with phenyl groups have been synthesized via co-condensation of tetraethoxysilane (TEOS) and phenyltriethoxysilane (PhTES) under acidic conditions. The phenyl-containing units are incorporated quantitatively and reach a maximum PhTES loading up to 33 mol% without a significant degradation of the structural ordering of the Pm3n mesophase. The synthesis parameters such as temperature, type of surfactant, and synthesis composition have been systematically investigated as a function of PhTES contents. A combination of multinuclear (1H、13C、29Si) solid-state NMR and two-dimensional (2D) NMR correlation techniques such as 13C{1H} and 29Si{1H} HETCOR (heteronuclear correlation) and 1H-1H exchange NMR has been used to establish framework locations of phenyl functional groups that are incorporated in the mesoporous structure and their interactions with the surfactant molecules. 2D 13C{1H} HETCOR NMR experiments reveal that the phenyl moieties are in close spatial proximity to the trimethylammonium headgroups of the cationic surfactant species. 2D 29Si{1H} HETCOR NMR experiments reveal that the phenyl moieties are in close spatial proximity to the Q4 group than to the Q3 group.
    In part two, well-ordered mesoporous silicas SBA-1 (cubic Pm3n symmetry) bifunctionalized with phenyl and thiol groups have been synthesized via co-condensation of (1,4-Bis(triethoxysilyl) benzene) (BTEB) and ((3-Mercaptopropyl)trimethoxysilane) (MPTMS) under acidic conditions. The materials obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), nitrogen sorption measurements, 13C and 29Si magic angle spinning (MAS).The SH-BTEB-SBA-1 is a good candidate for being adsorbed metal ion (mercury ,copper ,and silver). Moreover, the 13C signal of the carbon atom adjacent to SH groups are senstitive to metal ion binding. We demonstrate that 13C CPMAS NMR is a good sensor for detecting the metal ion binding with SH groups.

    中文摘要……………………………………………………………………. I 英文摘要……………………………………………………………………. II 目錄…………………………………………………………………………. IV 圖目錄…………………………………………………….………………… IX 表目錄………………………………………………………………………. XV Part Ⅰ 含有苯環官能基之 SBA-1……………………………………….. 1 第一章 序論………………………………………………………………... 2 1-1 中孔洞分子篩的發展…………………………………………………. 2 1-2 中孔洞分子篩MCM 系列簡介……………………………………… 4 1-3 中孔洞分子篩SBA系列簡介……………………………………….. 6 1-4 界面活性劑性質簡介………………………………………………. 9 1-4.1分子結構……………………………………………………….. 9 1-4.2 界面活性劑種類………………………………………………. 10 1-4.3 界面活性劑分子的排列………………………………………. 11 1-5 中孔洞分子篩的應用………………………………………………... 14 1-6 文獻回顧……………………………………………………………. 16 1-7 研究動機……………………………………………………………. 21 第二章 實驗部分…………………………………………………………... 22 2-1 藥品…………………………………………………………………. 22 2-2 實驗步驟…………………………………………………….……… 23 2-2.1 合成界面活性劑 CTEABr………………………………….. 23 2-2.2 合成含苯環官能基的SBA-1 (Ph-SBA-1) …………………... 23 2-2.3 以溶劑萃取法移除 Ph-SBA-1 孔洞中的模板……………... 24 2-3 實驗鑑定儀器………………………………………………………. 25 2-4 固態核磁共振光譜技術介紹……………………………………….. 25 2-4.1 Zeeman 作用力.…………………………………………… 28 2-4.2 非均向化學位移 (chemical shift anisotropy,CSA) ……… 29 2-4.3 偶極-偶極作用力 (dipole-dipole interaction) …….………. 29 2-4.4 J-偶合 (J-coupling) …………………….…….……………. 30 2-4.5 四極矩作用力 (quadrupolar interaction) ….…….………... 30 2-4.6 去耦合 (decoupling) 作用….…….….…….……………….. 30 2-4.7 魔角旋轉 (magic angle spinning,MAS) ….…….….……. 31 2-4.8 29Si MAS NMR 光譜….…….….……….…….….………... 32 2-4.9 1H MAS NMR 光譜….…….….……….…….….………... 32 2-4.10 交叉極化 (Cross Polarization, CP) ….…….….…….…….. 33 2-4.11 2D HETCOR (Heteronuclear Correlation) 實驗.………… 34 2-4.12 2D Exchange 實驗.…….…….…….…….…….…………. 35 2-5 鑑定儀器之原理……………………………………………………... 36 2-5-1 同步輻射中心光束線 (NSRRC Beam Line)……………….. 36 2-5-2 X 光粉末繞射 (Powder X-Ray Diffractometer;XRD)……. 37 2-5.3 氮氣吸脫附等溫曲線、表面積 與孔洞特性鑑定………….. 39 2-5.4 熱重分析儀 (Thermo Gravimetric Analyzer;TGA)………... 42 第三章 結果與討論………………………………………………………... 44 3-1 苯環官能基量對合成中孔洞材料Ph-SBA-1 的影響.…….……….. 44 3-1.1 XRD 結果………………………………………………….. 44 3-1.2 氮氣等溫吸脫附的結果…………………………………… 47 3-1.3 熱重分析.…….…….…….…….…….…….…….………… 51 3-2 溫度對合成中孔洞材料Ph-SBA-1 的影響.…….…….…….……... 54 3-2.1 XRD 結果………………………………………………….. 54 3-2.2 氮氣等溫吸脫附的結果…………………………………… 56 3-3 界面活性劑對合成的中孔洞材料Ph-SBA-1 的影響.…….………. 59 3-3.1 XRD 結果………………………………………………….. 59 3-3.2 氮氣等溫吸脫附的結果…………………………………… 61 3-4 在不同界面活性劑總類及不同合成條件下,對合成中孔洞材料 Ph-SBA-1 的影響.…….…….…….…….…….…….…….………... 64 3-5 利用固態核磁共振儀鑑定中孔洞材料 Ph-SBA-1.………………. 66 3-5.1 13C CP/MAS NMR 結果.…….…….…….…….…….……. 66 3-5.2 29Si MAS NMR 結果.…….…….…….…….…….……….. 68 3-5.3 1H MAS NMR 結果.…….…….…….…….…….………… 73 3-5.4 13C{1H} HETCOR NMR 結果.…….…….…….……….. 75 3-5.5 29Si{1H} HETCOR NMR 結果.…….…….…….………. 78 3-5.6 2D 1H-1H Homonuclear Correlation MAS NMR 結果 (exchange experiment) .…….…….….….…….…….…….. 82 第四章結論……………………………………………………………….... 86 參考文獻.………………………………………………………………....... 87 Part Ⅱ 具苯環及硫醇雙官能基之SBA-1………………………….......... 92 第一章 序論………………………………………………………………... 93 1-1 觸媒簡介……………………………………………………………… 93 1-2 文獻回顧……………………………………………………………… 94 1-2.1 含硫醇官能基之中孔洞分子篩……………………………… 94 1-2.2 含苯環官能基之 PMO 材料…………………………………. 97 1-2.3 含苯環官能基、硫醇官能基之雙官能基 PMO 材料………. 101 1-3 研究動機……………………………………………………………. 103 第二章 實驗部分…………………………………………………………... 104 2-1 藥品…………………………………………………………………. 104 2-2 實驗步驟…………………………………………………….……… 105 2-2.1 合成含硫基和苯環官能基的SBA-1 (SH-BTEB-SBA-1) .…. 105 2-2.2 以溶劑萃取法移除 SH-BTEB-SBA-1 孔洞中的模板.……. 106 2-2.3 SH-BTEB-SBA-1 中孔洞材料吸附金屬測試.….….….…… 106 2-3 實驗鑑定儀器………………………………………………………. 106 2-4 鑑定儀器之原理…………………………………………………….. 107 2-4.1 低真空掃描式電子顯微鏡 (LV-SEM)……………………… 107 2-4.2 元素分析儀 (Elemental Analyzer;EA)……………………. 108 2-4.3 感應耦合電漿原子發射光譜分析儀 (ICP-AES)………….. 109 第三章 結果與討論………………………………………………………... 111 3-1 硫醇官能基量對合成中孔洞材料SH-BTEB-1 的影響……………. 111 3-1.1 XRD 結果………………………………………………….. 111 3-1.2 氮氣等溫吸脫附的結果…………………………………… 114 3-1.3 13C CP/MAS NMR 結果…………………………………... 117 3-1.4 29Si MAS NMR 結果………………………………………. 119 3-1.5 元素分析…………………………………………………… 122 3-1.6 熱重分析…………………………………………………… 124 3-1.7 SEM 結果………………………………………………….. 127 3-2 界面活性劑對合成中孔洞材料SH-BTEB-SBA-1 的影響………… 129 3-2.1 XRD 結果………………………………………………….. 129 3-2.2 氮氣等溫吸脫附的結果…………………………………… 131 3-3 溫度對合成中孔洞材料SH-BTEB-SBA-1 的影響………………… 134 3-4 中孔洞材料SH-BTEB-SBA-1 應用於吸附金屬離子……………… 136 3-4.1 吸附1000 ppm 的不同金屬離子……………………………. 136 3-4.2 Cu2+、Hg2+、Ag+金屬離子在不同濃度下的吸附情形.......... 139 3-4.3 不同 SH 官能基量對吸附Cu2+、Hg2+金屬離子的影響...... 143 第四章結論……………………………………………………………….... 146 參考文獻.………………………………………………………………....... 147

    1. Breck ,D.W. “ Zeolite Molecular Sieve”, John Wiely and Sons, New York (1974).
    2. Corma , A. Chem. Rev. 95 (1995) 559.
    3. McBain, J. N. “The Sorption of Gases and Vapors by Solids”, George Rutledge and Sons Ltd., London, 1932.
    4. IUPAC. “Manual of Symbols and Serminology for Physicochemical Quantities and Units. Appendix II : Denitions, Terminology and Symbols in Colloid and Surface Chemistry part I”, Pure Appl. Chem., 1972, 31, 579
    5. (a) Kresge, C. T.; Leonowicz, M. E.; Roth, E. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710-712.
    (b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.;Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. J. Am. Chem. Soc. 1992, 114, 10834-10843.
    6. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier,T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, G. F. Science. 1995, 267, 1138-1143.
    7. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,P.;Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994,368, 317-321.
    8. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491
    9. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453
    10. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4 , Wiley-Interscience publications: New York, 2000.11. (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.(b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036.
    12. Pluronic poly(alkene oxide) triblock copolymers are trademarked products of BASF, Mt. Olive, NJ.
    13. (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994, 368, 317-321.
    (b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17.
    (c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366-368.
    (d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
    14. (a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.(b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269, 1242-1244.
    15. (a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36, 516-518.(b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.; 1997, 36, 910-928.
    (c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F.J. Am. Chem. Soc. 1997, 119, 3596-3610.
    16. (a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925-11933.(b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater.; 2000, 12, 1961-1968.(c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B. 2000, 104, 11465-11471.(d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105, 6817-6823.
    17. Todros, T. F. “Surfactant”, Academic Press, London, 1984.
    18. Tanford, C. “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley, New York, 1973.
    19. Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999.
    20. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996,111, 195-202
    21.Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science. 1994, 265, 1413-1415.
    22. Liu, J. ; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv. Meter. 1998, 10, 161-165.
    23. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
    24. Steel, A. ; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7, 1829-1832.
    25. Fowler, C. E.;Burkett, S. L.;Mann, S. Chem. Commun. 1997, 1769.
    26. Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Commun. 1996, 1367.
    27. Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201.
    28. Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188.
    29. Bambrough, C. M ; Robert ,C. T. ; Williams, R.T. Journal of Colloid and Interface Science 201, 220–222 1998
    30. F Babonneau, F. J. Mater. Chem., 1999, 9, 175–178
    31. Goletto, V.; Imperor, M.; Babonneau, F. Studies in Surface Science and Catalysis 129
    32. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491
    33. Goletto, V.; Dagry, V.; Babonneau, F. Mater. Res. Soc. Symp. Proc. 1999, 576,229.
    34. Yang, C.M. ; Wang, Y. Phys. Chem. Chem. Phys. 2004, 6, 2461-2467.
    35. Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
    36. Levitt, M. H.; Freeman, R.; Frenkiel, T. J. Magn. Reson. 1982, 50,157-160.
    37.Shaka, A.J.; Barker, P.B.; Freeman. R. J. Magn. Reson. 1985, 64, 547-552
    38.Bennett, A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.V.; Griffin, R.G. J. Chem. Phys. 1995, 103. 6951-6958
    39.Becker, K. A.; Kowalak, S. J. Chem. Soc., Faraday Trans. 1 1987, 83, 535
    40. 國家同步輻射中心 (NSRRC), 新竹市, 台灣省
    41. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem.Soc. 1940, 62, 1723-1732.
    42. Hiemenz, P. C.; Rajagopalan, R. “Principles of Colloid and Surface Chemistry”, 3rd ed. Marcel Dekker, New York, 1997.
    43. Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373-380.
    44. (a) Van Rossum, B. J.; Förster, H.; De Groot, H. J. M. J. Magn. Reson.1997, 124, 516. (b) Vinagradov, E.; Madhu, P. K.; Vega, S. Chem. Phys. Lett. 1999, 314, 443. (c) Van Rossum, B. J.; De Groot, C. P.; Ladizhansky, V.; Vega, S.; De Groot, H. J. M. J. Am. Chem. Soc. 2000, 122, 3465. (d) Sozzani, P.; Bracco, S.; Comotti, A.; Camurati, I.; Simonutti, R. J. Am. Chem. Soc. 2003, 125, 12881. (e) Sozzani, P.; Comotti, A.; Bracco, S.; Simonutti, R. Chem. Commun. 2004, 768.
    part2
    1. (a) Lauher, J. W.; Hoffmann, R. J. Am . Chem. Soc. 1976, 98, 1729-1742.(b) Heck,R. F.; Breslow, D. S. J. Am . Chem. Soc. 1961, 83, 4023-4027(c) Brown, C, K.; Wilkinson G.;J. Chem. Soc. A. 1970,2753
    2. Bond, G. C. ‘‘Heterogeneous Catalysis:Principles and Applications.2nd ed. Clarendon Press, Oxford, UK,1987.
    3. Miessler, G. L.; Tarr, D.A. ‘‘Inorganic Chemistry’, 2nd ed, Prentice Hall, New York, 1999. pp. 498
    4. Satterfield, C. N.‘Heterogeneous Catalysis in practice., McGrew-Hill, New York, 1980.
    5. Feng, X.;Fryxell, G. E.;Wang, L. Q.;Kim, A. Y.;Liu, J.;Kemmer,K. M. Science 1997, 276, 923.
    6. Price, N. P.;Stevent, L. Fundamentals of Enzymology Second Edition(Oxford New York)
    7. Yiu, H. H. P.;Botting, C. H.;Botting, N. P.;Wright, P. A. phys. Chem.Chem. Phys. 2001, 3, 2983-2985.
    8. Van Rhijn, W. M.;De Vos, D. E.;Sels, B. F.;Bossaert, W. M.;Jacobs,P. A. Chem. Commun. 1998, 317-318.
    9. (a) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.
    (b) Melde, B. J.; Holland, B. T.; Blandford, C. F.; Stein, A. Chem. Mater. 1999, 11, 3302.
    10. Bion, N. ; Ferreira, P. ; Valente, A. ; Isabel, S. J. Mater. Chem., 2003, 13, 1910–1913
    11. Kapoor ,M.P. ; Yang,Q. ; Inagaki ,S. Chem. Mater., Vol. 16, No. 7, 2004, 1213
    12. Nakajiam ,K. ; Tomita, I. Hara,M.Adv.Mater.2005,17,1839-1842
    13. Li,.C ; Yang ,J. ; Shi ,X. ; Liu ,J. ; Yang ,Q. Microporous and Mesoporous Materials xxx 2006, 220–226
    14. Yang ,Q. ; Kapoor,M.P. ; Inagaki ,S. J. AM. CHEM. SOC. 2002, 124, 9694-9695
    15. Ra´c ,B. ; Hegyes ,P. ; Forgo, P. ; Molna´r ,A. Applied Catalysis A: General 299 (2006) 193–201
    16. Goto, Y. ; Inagaki, S. Microporous and Mesoporous Materials 89 (2006) 103–108
    17. Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
    18. Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem. 1996, 100, 9906-9910.
    19. 黃忠智、湛憶秦,科儀新知,第二十卷第六期,88年
    20. Trabelsi,S. ; Albouy ,P.A.; Imperor-Cler,M.; Guillot ,S. ; Langevin ,D. ChemPhysChem 2007, 8, 2379 – 2385
    21. Wim M. Van Rhijn,* Dirk E. De Vos, Bert F. Sels, Wim D. Bossaert and Pierre A. Jacobs Chem. Commun., 1998 317
    22. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487.
    23. Sadasivan, S. ; Khushalanib, D. ; Mann, S. J. Mater. Chem., 2003, 13, 1023–1029

    QR CODE
    :::