跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳怡彣
Yu-wen Chen
論文名稱: 藉由莫拉克颱風及西南氣流個案探討雲微物理參數化法模擬雷達回波結果之比較
Influence of microphysics schemes on radar reflectivity: Typhoon Morakot and a case during SoWMEX/TiMREX
指導教授: 隋中興
Chung-hsiung Sui
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
畢業學年度: 99
語文別: 中文
論文頁數: 55
中文關鍵詞: 水象粒子有效雷達反射率因子雲微物理參數化法
外文關鍵詞: hydrometeor, effective radar reflectivity factor, microphysics scheme
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用雷達觀測資料評估比較一個較具代表性的單變數滴譜分佈(single-moment DSD)總體水物雲微物理參數化法:Lin方案(Lin et al. 1983)。藉由WRF模式(the Weather Research and Forecasting Model)中使用此參數化法,針對選取的莫拉克颱風(2009年8月7日2000UTC)及西南氣流個案(2008年6月14日1700UTC)的雲雨模擬滴譜,利用雷達模擬軟體計算其雷達反射率(Z),與對應的雷達觀測Z值比較,分析雲微物理參數化法的模擬結果。
    頻率分布而言,3公里高度時,莫拉克颱風個案模式結果與七股雷達觀測的分布趨勢較相近,西南氣流個案模式雷達回波結果有60%介於20~25dBz間,SPOL雷達觀測結果60%分布在20~35dBz間;7公里高度時,莫拉克颱風個案與七股雷達觀測資料分佈一致,西南氣流的模式頻率分布則有高值高估的現象。平均雷達回波結果顯示西南氣流及莫拉克颱風個案與雷達觀測資料相比Lin方案整體皆呈現高估,而層狀區底層模式結果與觀測值相近,6公里以上隨高度增加與SPOL雷達觀測值差異愈大,有高估現象,對流區則整體呈現高估。


    In order to evaluate the influence of microphysics scheme on radar reflectivity, the single-moment microphysics scheme (Lin scheme; Lin et al., 1983) was used in the Weather Research and Forecasting (WRF) Model to provide the initial condition for QuickBeam radar simulation. Two rainfall cases were chosen in this study: Typhoon Morakot (2000UTC 7 Aug 2009) and an experiment during SoWMEX/TiMREX (1700UTC 14 Jun 2008). The simulated radar reflectivity were compared to the observed radar data (RCCG and SPOL data).
    At the altitude of 3 km, the frequency distribution of simulated radar reflectivity in case of the Typhoon Morakot was similar to the observation of RCCG. In case of SoWMEX/TiMREX, 60% of radar reflectivity was distributed in 20-25 dBz, which was more concentrative than the observation of SPOL(20-35 dBz). At the altitude of 7 km, the frequency distribution of radar reflectivity in case of the Typhoon Morakot was still similar to the observation of RCCG. But the frequency distribution of large value in case of SoWMEX/TiMREX was overestimate. The results of vertical mean radar reflectivity show that the simulated radar reflectivity by Lin scheme was overestimate in both cases of the Typhoon Morakot and SoWMEX/TiMREX. In addition, the simulated radar reflectivity was similar to the observation at the bottom of stratiform region. Above the altitude of 6 km, the difference between the simulation and observation of SPOL increased with height. Besides, the results of all region of convection was overestimate.

    摘要---------------------------------I Abstract-----------------------------II 誌謝---------------------------------III 目錄---------------------------------V 圖目錄-------------------------------VII 表目錄-------------------------------X 第一章 緒論-------------------------1 1-1 研究動機------------------------1 1-2 文獻回顧------------------------2 1-3 文章架構------------------------5 第二章 資料及個案分析---------------6 2-1 觀測儀器-------------------------6 2-1-1 SPOL雷達-----------------------6 2-1-2 七股雷達站---------------------6 2-2 個案天氣系統簡介----------------8 2-2-1 西南氣流-----------------------8 2-2-2 莫拉克颱風---------------------10 第三章 模式介紹---------------------12 3-1 雷達模擬簡介--------------------12 3-2 QuickBeam雷達模擬軟體輸入設定---13 第四章 模式架構及實驗設計-----------17 4-1 模式設定------------------------17 4-1-1 西南氣流-----------------------17 4-1-2 莫拉克颱風---------------------18 4-2 雲物理參數方案------------------19 第五章 結果與討論 -------------------21 5-1 混合比--------------------------21 5-2 SDSU與QuickBeam模擬結果之比較---23 5-3 雷達回波------------------------24 5-3-1 西南氣流-----------------------24 5-3-2 莫拉克颱風---------------------29 5-3-3 水象粒子對雷達回波之影響-------32 第六章 結論-------------------------35 參考文獻-----------------------------38

    [1] 王寶貫,雲物理學,渤海堂,台北市,民國八十六年一月。
    [2] Bringi, V. N.,V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regime from disdrometer and dual-polarized radar analysis. J. Atmos. Sic., 60, 354-365.
    [3] Brown, P. R. A. and Swann, H.A., “Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data”, Q. J. R. Meteorol. Soc., Vol.123, pp.2245-2275, October 1997.
    [4] Bull.Amer. Meteor. Soc., Vol.88, pp.1723-1727, November 2007. Platt, C. M. R., “A parameterization of the visible extinction coefficient in terms of the ice/water content”, J. Atmos. Sci., Vol.54, pp.2083-2098,August 1997.
    [4] Chen, J.‐P., and D. Lamb, 1994: Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part I: Description of the Microphysical Model. J. Atmos. Sci., 51, 2613‐2630.
    [5] Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.
    [6] Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part _: Description. J. Atmos. Sci., 51, 249-280.
    [7] Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parameterization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997–2017.
    [8] Gamache, J. F., and R. A. Houze, 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
    [9] Haynes, J. M., “QuickBeam radar simulation software user’s guide”,Colorado State University, October 2007.
    [10] Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens, “A multipurpose radar simulation package: QuickBeam”
    [11] Hirohiko Masunaga, “Satellite Data Simulator Unit (SDSU) ver.2 User’s Guide”,Nagoya University, May 2010
    [12] Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979:Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156–162.
    [13] Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface features to the precipitation and air flow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444-1472.
    [12] Lin, Y. L., R.D. Farley, and H.D. Orville, “Bulk parameterization of the snow field in a cloud model”, J. APPL. Meteor., Vol. 22, pp.1965-1902, February 1983.
    [13] Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: Attempt of classification. J. Atmos. Sci., 65, 1721-1748.
    [14] Kong, F., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.–Ocean, 35, 257–291.
    [15] Lin, Y. L., R.D. Farley, and H.D. Orville, “Bulk parameterization of the snow field in a cloud model”, J. APPL. Meteor., Vol. 22, pp.1965-1902, February 1983.
    [16] Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5, 165‐166.
    [17] Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 1880–1900.
    [18] Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud. J. Meteor. Soc. Japan, 68, 107-128.
    [19] Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107.
    [20] Solomon, A., H. Morrison, O. Persson, M. D. Shupe, J.-W. Bao, 2009: Investigation of microphysical parameterizations of snow and ice in arctic clouds during M-PACE through model–observation comparisons. Mon. Wea. Rev., 137, 3110-3128.
    [21] Thompson, G., R.M. Rasmussen, and K. Manning, “Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis”, Mon. Wea. Rev., Vol.132, pp.519-542, February 2004.
    [22] Thompson, G., R. M. Rasmussen, and K. Manning, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
    [23] Tokay A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371.
    [24] Ulbrich, C. W., 1983: Natural Variations in the Analytical Form of the Raindrop Size Distribution. J. Appl. Meteor., 22, 1764‐1775.
    [25] Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995:New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 29–62.
    [26] Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067-1078.
    [26] Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration. Part I: Dynamics and microphysics, J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.

    QR CODE
    :::