| 研究生: |
張立煒 Li-wei Chang |
|---|---|
| 論文名稱: |
Indolicidin及其類似物與微脂粒交互作用之熱力學研究 Thermodynamics of the interaction of indolicidin analogs with SUVs |
| 指導教授: |
阮若屈
Ruoh-chyu Ruaan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 熱力學 、鹼性抗生胜肽 、微脂粒 |
| 外文關鍵詞: | indolicidin, SUV, equilibrium dialysis, thermodynamics, antimicrobial peptides |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹼性抗生胜肽Indolicidin(IL)因其具有廣效且迅速的抗菌性,同時不易造成微生物的抗藥性,因此近年來被廣泛的研究以期能成為新一代的抗生藥物。然而,IL因對紅血球有溶血活性而限制了其進一步的發展。本實驗室利用分子動態模擬,設計了其低溶血性的類似物ILK7、ILF89和ILK7F89,而這些類似物也各自展現出不同強弱的抗菌性。本研究主要是從熱力學的角度,探討IL及其類似物與仿紅血球、仿細菌生物膜系統微脂粒(small unilamellar vesicle,SUV)間的交互作用,進而觀察其不同溶菌與溶血性的根源。首先,我們利用平衡透析的實驗方法,獲得作用達平衡時胜肽吸附在微脂粒上的吸附量,並由胜肽初始濃度的不同進一步獲得其恆溫吸附曲線。由於傳統用來描述蛋白質分子吸附於基質上的Langmuir adsorption model無法恰當的描述IL及其類似物與磷脂膜之吸附作用,於是本研究提出了一個新的吸附模式:Two-site adsorption model。此吸附模式主要將IL及其類似物自我聚集(self-aggregate)成寡聚體之現象考量進吸附反應當中,而此模式也精確的模擬了胜肽分子於兩種不同生物膜之吸附作用。
接下來本研究利用van’t Hoff方程式的二次式關係式來求得反應的熱力學參數,並進一步的由熱力學參數分析IL及其類似物與仿生物細胞膜之吸附作用。從熱力學參數的分析我們可以得知:(1) IL及其類似物於液相中的寡聚現象主要是疏水力作用的一種亂度趨動(Entropy driven)之反應。(2) 無論與細菌細胞膜或紅血球細胞膜作用,IL及其類似物都傾向於以聚集體的方式吸附於其上。(3) 無論以單體形式或以聚集體形式吸附,IL及其類似物對生物膜的作用力大小都與其生物活性強弱呈現相當大的相關性。(4)藉由比較單體與聚集體之熱力學參數,可得知聚集體因為其吸附於膜上後可能產生分散現象,而造成細胞膜較大的擾亂,所以其吸附焓及亂度都較單體來的大。
綜合來看,IL及其類似物無論以單體或聚集體吸附,其與細胞膜之親和性皆與生物活性呈現正相關,又吸附作用中其傾向以聚集體吸附的程度又大於單體吸附,所以可知IL及其類似物之寡聚現象對其生物活性的影響相當重要。
Cationic antimicrobial peptide Indolicidin(IL) are beimg increasingly recognized as potential candidates for antibacterial drugs in the face of the rapidly emerging bacterial resistance to conventional antibiotics in recent years.However,its hemolytic activity limit its application. We design it’s anlogoues ILK7, ILF89 and ILK7F89 according to the results of molecular dynamics simulation in order to reduce the hemolytic activity but remain the antimicrobial activity. Understand the interaction between peptides and cell membrane may help us to reach our goal. In this study, we want to investigate thermodynamics of the interaction between IL-analogues and lipid bilayers. Because of the less accuracy of Langmuir adsorption model, we proposed a new adsorption model: Two-site sdsorption model to simulate the isothermal adsorption curve obtained from equlilibrium dialysis experiment . The difference between the two models is the self-aggregate phenomenom of IL-anlogues is taken into consideration. The results of using Two-site adsorption model simulate the isothermal adsorption curve is quite well.
Then we use van’t Hoff quadratic equation to get the thermodynamic parameters of the peptide-membrane interaction. Through analysis of the thermodynamic parameters we could understand that (1) the self-aggregation of IL-anlogues is driven by entropy. (2) IL and its analogues tend to adsorb to both bacterial and mammalian red blood cell membrane in the aggregated form.(3) The biological activities of IL-analogues are well correlated with its binding affinity to lipid bilayer.(4) Because of the membrane interruption and membrane dispersion of peptides, the enthalpy and entropy change of aggregate adsorption are more than monomer adsorption. As a result, self-aggregation phonomenom is a important factor to affect its biological activity.
1.Virtanen, J.A., Cheng, K. H., and Somerharju, P., “Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model”. Proceedings of the National Academy of Sciences of the United States of America, 1998. vol. 95(no. 9): p. 4964-4969.
2.Bangham D., M.M.S.a.J.C.W., “Diffusion of Univalent Ions across the Lamellae of Swollen Phosopholipids.”. J. Mol. Biol., 1965. 13: p. 238-252.
3.Lasic, D.D., Liposomes:From Physics to Applications. 1993.
4.J. Wilschut, N.D.a.D.P., Studies on the Mechanism of Membrane-Fusion - Kinetics of Calcium-Ion Induced Fusion of Phosphatidylserine Vesicles Followed by a New Assay forMixing of Aqueous Vesicle Contents. Biochemistry, 1980. 19: p. 6011-6021.
5.Lasic, D.D., Mechanisms of Liposome Formation. J. Lipid Res., 1995. 5: p. 431-441.
6.G. V. Betageri, S.A.J.a.D.L.P., Liposome Drug Delivery Systems. 1993.
7.G. V. Betageri, S.A.J., B. S. Daniel and L. Parsons, Liposome Drug Delivery Systems. 1993.
8.E. E. Szebeni, D.H.H.a.K.H.W., Encapsulation of Hemolglobin on Phospholipid liposomes︰Characterization and Stability. Biochemistry, 1985. 24: p. 2827-2832.
9.L. Rossi, S.A., P. Calissano and E. Marra, Interaction of Different froms of Hemoglobin with Artificial Lipid Membranes. Biochim. Biophys. Acta., 1975. 375: p. 477-482.
10.Miller, W.P.P.a.I.F., Oxidative Interaction between Hemoglobin and Egg Lecithin Liposomes. Biomat. Art. Cells, Art.Org., 1981. 17: p. 563-581.
11.Miller, I.F., “Synthetic Red Blood Cells from Lipid Encapsulated Hemoglobin”. Chem. Eng. Commun., 1981. 9,: p. 363-370.
12.R. L. Hamilton, J.G.L., S. S. Guo, M. C. Williams and R. L.Havel, “Unilamellar Liposomes made with the French Oressure Cell︰A Simple Preparation and Semiquantitative Technique”. J.Lipid Res., 1980. 21: p. 981-992.
13.B. P. Gaber, P.Y., J. P. Shriedan and E. L. Chang, “Encapsulatiom of Hemoglobin in Phospholipid Vesicles”. FEBS Lett., 1983. 153: p. 285-288.
14.Bangham, D.W.D.a.A.D., “ Large Volume Liposomes by An Ether Vaporization Method ”. Biochem. Biophys. Acta., 1976. 443: p. 629-634.
15.S. Kim and G, M., Martin, “Preparation of Cell-Size Unilamellar Liposomes with High Captured Volume and Defined Size Distribution”. Biochem. Biophys. Acta., 1981. 646: p. 1-9.
16.B. Jopski, V.P., H. W. Jaroni, R. Schubert and K. H. Schmidt, “Perparation of Hemoglobin-containing Liposomes Using Octylglucoside and Octyltetraoxyeyhylene”. Biochem. Biophys. Acta., 1989. 978: p. 79-84.
17.Lehrer, R.e.a., “Defensins Natural Peptide Antibiotics of Human Neutrophils”. J.Clin.Invest, 1985. 76: p. 1427-1435.
18.Michl, H.a.A.C., Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species. Chemical Monthly, 1970. 101: p. 182-189.
19.Habermann, E., Bee and Wasp Venoms Science. 1972. 177: p. 314-322.
20.J Patterson-Delafield, R.J.M., and R I Lehrer, Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism. Infect Immun., 1980. 30(1): p. 180-192.
21.Albiol Matanic VC, C.V., Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. International Journal of Antimicrobial Agents, 2004. 23(4): p. 382-389.
22.Morikawa N, H.K., Nakajima T, Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun. , 1992. 189: p. 184-90.
23.Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. PNAS, 1987. 84: p. 5449-5453.
24.Selsted, M., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of biological chemistry, 1992. 267(7): p. 4292-4295.
25.Radermacher, S., Bactenecin, a leukocytic antimicrobial peptide, is cytotoxic to neuronal and glial cells. J Neurosci Res. , 1993. 15: p. 657-662.
26.Chan, D.I., Prenner, E. J., and Vogel, H. J., Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta (BBA)- Biomembranes, 2006. 1758(9): p. 1184-1202.
27.Biggin, P.C.a.M.S.P.S., Interactions of alpha-helices with lipid bilayers: a review of simulation studies. Biophysical Chemistry, 1999. 76(3): p. 161-183.
28.Yang, L.e.a., Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001. 81(3): p. 1475-1485.
29.Miteva, M.e.a., Molecular electroporation" a unifying concept for the description og membrane pore formatiom by antibacterial peptides, exemplified with NK-lysin. FEBS Lett., 1999. 462(1-2): p. 155-158.
30.Pokorny, A.a.P.F.E.A., Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicle and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry, 2004. 43(27): p. 8846-8857.
31.Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro., 2005. 3(3): p. 238-250.
32.Rozek, A., C.L Friedrich, and R.E.W Hancock, Structure of the bovine antimicrobial peptide Indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 2000. 39(51): p. 15765-15774.
33.Robinson, W.E.e.a., AntipHIV-1 activity of Indolicidin, an antimicrobial peptide from neutrophils. Journal of Leukocyte Biology, 1998. 63(1): p. 94-100.
34.Ahmad, I., Perkins, W. R., Lupan, D. M. et al., Liposomal entrapment of the neutrophil-derived peptide Indolicidin endows it with in vivo antifungal activity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1995. 1237(2): p. 109-114.
35.Subbalakshmi, C., Krishnakumari, V., Nagaraj, R. et al., Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide Indolicidin. FEBS Letters, 1996. 395(1): p. 48-52.
36.Schluesener, H.J.e.a., Leukocytic Antimicrobial Peptides Kill Autoimmune T-Cells. Journal of Neuroimmunology, 1993. 47(2): p. 199-202.
37.Yang Sung-Tae, S.S.Y., , K.-S. H. et al., Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. International journal of antimicrobial agents, 2006. 27(4): p. 325-330.
38.Falla, T.J., Karunaratne, D. N., and Hancock, R. E. W., Mode of Action of the Antimicrobial Peptide Indolicidin. J. Biol. Chem., 1996. 271(32): p. 19298-19303.
39.Friedrich, C.L., Moyles, D., Beveridge, T. J. et al., Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria. Antimicrob.Agents Chemother., 2000. 44(8): p. 2086-2092.
40.Giacometti, A., Cirioni, O., Greganti, G. et al., In Vitro Activities of Membrane-Active Peptides against Gram-Positive and Gram-Negative Aerobic Bacteria. Antimicrob. Agents Chemother., 1998. 42(12): p. 3320-3324.
41.Lee, D.G., Kim, H. K., Kim, S. A. et al., Fungicidal effect of Indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications, 2003. 305(2): p. 305-310.
42.Schibli, D.J., Epand, R. F., Vogel, H. J. et al., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochemistry and Cell Biology, 2002. 80: p. 667-677.
43.Manhong Wu, E.M., Roland Benz, Robert E. W. Hancock, Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 1999. 38(22): p. 7235-7242.
44.Subbalakshmi C, S.N., Mechanism of antimicrobial action of Indolicidin. FEMS Microbiol Lett. , 1998. 160(1): p. 91-96.
45.Hsu, C.-H., Chen, C., Jou, M.-L. et al., Structural and DNA-binding studies on the bovine antimicrobial peptide, Indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucl. Acids Res., 2005. 33(13): p. 4053-4064.
46.Mozsolits, H.e.a., Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonace. Biochim Biophys Acta. , 2001. 1512(1): p. 64-76.
47.Friedrich, C.L.e.a., Structure and Mechanism of Action of an Indolicidin Peptide. Derivative with Improved Activity against Gram-positive Bacteria. Journal of biological chemistry, 2001. 276(26): p. 24015-24022.
48.Falla, T.J., and Hancock, R. E., Improved activity of a synthetic Indolicidin analog. Antimicrob. Agents Chemother., 1997. 41(4): p. 771-775.
49.Yew, W.S.a.H.E.K., The role of tryptophan residues in the hemolytic activity of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Biochimie, 2000. 82(3): p. 251-257.
50.Staubitz, P.e.a., Structure-function relationships in the tryptophan-rich, antimicrobial peptide Indolicidin. Journal of Peptide Science, 2001. 7(10): p. 552-564.
51.Subbalakshmi, C.e.a., Antibacterial and hemolytic activities of single tryptophan analogs of Indolicidin. Biochemical and Biophysical Research Communications, 2000. 274(3): p. 714-716.
52.Yinling Li, X.H., and Lukas K. Tamm, Thermodynamics of Fusion Peptide-Membrane Interactions. Biochemistry, 2003. 42: p. 7245-7251.
53.Haidacher, D., Vailaya, A. and Horváth, C., Temperature effects in hydrophobic interaction chromatography. Proc. Natl. Acad. Sci. U.S.A., 1996. 93: p. 2290-2295.
54.Boysen, R.I., Wang, Y., Keah, H.H. and Hearn, M.T.W., Observations on the origin of the non-linear van`t Hoff behaviour of polypeptides in hydrophobic environments. Biophys. Chem., 1999. 77: p. 79.
55.Vailaya, A.a.H., C., Exothermodynamic relationships in liquid chromatography. J. Phys. Chem. B, 1998. 102: p. 701.
56.Wimley WC, W.S., Quantitation of electrostatic and hydrophobic membrane interactions by equilibrium dialysis and reverse-phase HPLC. Anal Biochem. , 1993. 213: p. 213-217.
57.Ladokhin AS, S.M., White SH., Bilayer interactions of Indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophysical Journal, 1997. 72: p. 794-805.
58.Chen, W.Y.e.a., Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents: Studies by Isothermal Titration Calorimetry and the van''t Hoff Equation. Langmuir, 2003. 19(22): p. 9395-9403.
59.Wiggins, P.M., Hydrophobic hydration, hydrophobic forces and protein folding. Physica A: Statistical and Theoretical Physics, 1997. 238(1-4): p. 113-128.
60.Barnes, P.e.a., Cooperative effects in simulated water. Nature, 1979. 282: p. 459-464.