| 研究生: |
陳偉民 Wei-min Chen |
|---|---|
| 論文名稱: |
分散粒子動力學法模擬雙嵌式共聚物與三崁式共聚物微胞之探討 Micellization of diblock and triblock copolymers : Dissipative Particle Dynamics |
| 指導教授: |
曹恒光
Heng-kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 雙性團聯聚合物 、分散粒子動力學 |
| 外文關鍵詞: | diblock copolymer, Dissipative Particle Dynamics |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要的目標是以一種介觀尺度下的模擬方法-分散粒子動力學(Dissipative Particle Dynamics)來探討雙性團聯共聚物(amphiphilic copolymer)-中的雙分子共聚物( diblock-copolymer)與三分子共聚物(triblock-copolymer)在溶液中固定疏溶劑(solvophobic)鏈段,增加親溶劑(solvophilic)鏈段以及調整親溶劑鏈段與疏溶劑鏈段兩物種之間的斥力上升情況下,對於形成微胞的聚集數(aggregation number)和疏劑鏈段核半徑(radius of solvophobic core)之變化。進而研究以上兩種情況對整體球型因子跟疏液核球型因子的影響。在以往的實驗上的數據都是藉由動態光散射光譜儀 (Dynamics Light Scattering, DLS)或等儀器來求得平均的粒徑和分子量,但是價格昂貴儀器取得困難,這裡我們除了提供程式模擬的出DLS 之外,更可以進一步的取得型態的樣圖,藉由這種模擬方法我們可以有效的觀察出雙性團聯共聚物在水中的特色。
In this study. We use a whole new mesoscale simulation method “DPD (Dissipative Particle Dynamics)” to research the amiphilic diblock copolymer micelle and amiphilic triblock copolymer micelle in dilute solution. First we keep solvophobic beads with increasing solvophilic beads and increasing repulsive parameter to discuss aggregation number、 micelle core radius and asphericity . We find the morphologhy just are micelles only. Then we keep solvophilic beads with increasing solvophobic beads to discuss other morphologhy .In previous study it depends on experimental datum with DLS(Dynamics Light Scattering ) instrument . So in the study we provide a new idea to simulate the phenomenon. And we find the power law relation to aggregation number in increasing solvophilic bead.
1. W. Lin, C. L. Wang and Y. C. Chen, Drug Delivery 12, 223(2005).
2. C. L. Lo, C. K. Huang, K. M. Lin and G. H. Hsiue, Biomaterials 28, 1225(2007).
3. L. Guo and E. Luijten, Journal of Polymer Science: Part B: Polymer Physcis 43, 959(2005).
4. V.A. Bloomfield, Biopolymers 54, 168(2000).
5. F. Li, T. Ketelaar, A. T. M. Marcelis, F. A. M. Leermakers, M. A. C. Stuart and E. J. R. Sudho1lter, Macromolecules 40, 329(2007).
6. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering
7. J. Rudnick and G. Gaspari, J. Phys. A: Math. Gen. 19, 191(1986).
8. H. Noguchi and K. Yoshikawa, J. Chem. Phys. 109, 5070(1998).
9. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, New York, 1996)
10. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19,155(1992).
11. P. Español, and P. Warren, Europhys. Lett. 30, 191(1995).
12. C. F. Fan, B. D. Olafson, M. Blanco and S. L. Hsu, Macromolecules 25, 366(1987).
13. R. D. Groot and T. J. Madden, J. Chem. Phys. 108, 8713(1998).
14. R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423(1997).
15. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press: Ithaca (1953)