跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭栢川
Bai-Chun Zheng
論文名稱: 集區大小為二的兩水準因子集區設計
指導教授: 王丕承
Pe-Cheng Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 93
語文別: 中文
論文頁數: 64
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗設計目前已經被廣泛應用於各種領域當中,當安排實驗進行時會遇到因為時間、地點或其他原因,造成條理性的誤差,在這種情況下我們會使用集區設計。隨著不同的製造流程,每次可能會製造出不同品質特性的產品,在製造流程或設備的限制下,只允許兩個實驗徑同時執行,這時候就必須要選擇利用集區大小為二的集區設計,來找到影響產品特性值的因子效應。
    針對集區大小為二的兩水準因子集區設計,本研究在固定實驗徑大小的情況下,欲找出能夠對因子主效應和二階交互作用作最佳估計,避免與集區效應混淆的集區設計,利用Wang(2004)所提出的集區設計的結果,找到各種具有不同性質的集區設計,以表格形式直接列出因子在直交表中的位置,運用兩個判斷設計優劣的準則排出表格中集區設計的順序,往後設計實驗者可以不需要瞭解艱深的理論,只要具備直交表的基本知識,就可以透過本研究提出的結果來安排實驗。


    第一章 緒論 1 第二章 文獻回顧 5 2.1 集區設計 5 2.2 判斷設計的優劣準則 10 2.3 特殊的集區設計 13 2.3.1 集區大小為二的2^n完全因子集區設計 15 2.3.2 集區大小為二的2^(n-1)部分因子集區設計 16 2.3.3 集區大小為二的2^(n-p)部分因子集區設計 17 第三章 集區大小為二的兩水準因子集區設計 19 3.1集區設計的建構方法 21 3.2實驗徑大小為16的兩水準因子集區設計 22 3.3實驗徑大小為32的兩水準因子集區設計 28 3.4實驗徑大小為64的兩水準因子集區設計 30 3.5實驗徑大小為128的兩水準因子集區設計 37 第四章 結論 61 參考文獻 63

    Bisgaard, S. (1994a), “Blocking Generators for Small 2k-p Designs,”
    Journal of Quality Technology, 26, 288-296.
    Bisgaard, S. (1994b), “A Note on the Definition of Resolution for Blocked 2k-p Designs,” Technometrics, 36, 308-311.
    Box, G. E. P. and Hunter, J. S. (1961), “The 2n-p Fractional Factorial Designs Part I,” Technometics, 3, 311-352.
    Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978), Statistics for Experimenters, New York: John Wiley & Sons.
    Chen, H. and Cheng, C. S. (1999), “Theory of Optimal Blocking of 2n-m Designs,” The Annals of Statistics, 27, 1948-1972.
    Cheng, S. W., Li, W. and Ye, K. Q. (2004), “Blocked Nonregular Two-Level Factorial Designs,” Technometrics, 46, 269-279.
    Cheng, S. W. and Wu, C. F. J. (2002), “Choice of Optimal Blocking Schemes for Two-Level and Three-Level Designs,” Technometrics, 44, 268-277.
    Deng, L. Y. and Tang, B. (1999), “Generalized Resolution and Minimum Aberration Criteria for Plackett-Burman and Other Non-regular Factorial Designs,” Statistica Sinica, 9, 1071-1082.
    Draper, N. R. and Guttman, I. (1997), “Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two,” Journal of Quality Technology, 29, 71-75.
    Fries, A. and Hunter, W. G. (1980), “Minimum Aberration 2k-p Designs,” Technometrics, 22, 601-608.
    Kacker, R. N. and Tsui, K. L. (1990), “Interaction Graphical Aids for Planning Experiments,” Journal of Quality Technology, 22, 1-14.
    Sun, D. X., Wu, C. F. J. and Chen, Y. (1997), “Optimal Blocking Schemes for 2n and 2n-p Designs,” Technometrics, 39, 298-307.
    Sitter, R. R., Chen, J. and Feder, M. (1997), “Fractional Resolution and Minimum Aberration in Blocked 2n-k Designs,” Technometrics, 39, 382-390.
    Taguchi, G. (1987), System of Experimental Design, vol. 1 and 2, White Plains, NY: Unipub/Kraus International Publication.
    Tang, B.and Deng, L. Y. (1999), “Minimum G2-Aberration and Non-regular Fractional Factorial Designs,” The Annals of Statistics, 27, 1914-1926.
    Wang, P. C. (2004), “Designing Two-level Fractional Factorial Experiments in Blocks of Size Two,” Sankhya : The Indian Journal of Statistics, 66, 325-340.
    Wu, C. F. J. and Chen, Y. Y. (1992), “A Graph-Aided Method for Planning Two-Level Experiments When Interactions Are Important,” Technometics, 34, 162-175.
    Yang, Y. J. and Draper, N. R. (2003), “Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two,” Journal of Quality Technology, 35, 294-305.

    QR CODE
    :::