| 研究生: |
吳幼琦 Yu-Qi Wu |
|---|---|
| 論文名稱: |
合成應用於溶液製程高分子太陽能電池的含苯並 [1,2-b:4,5-b’]二噻吩基共聚物 Synthesis of Benzo[1,2-b:4,5-b']dithiophene-Based Copolymers for Solution Processed Polymer Solar Cells |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 高分子太陽能電池 、P-型材料 、塊材異質接面 |
| 外文關鍵詞: | Polymer solar cell, P-type semiconductors, Bulk Heterojunction |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,石化燃料蘊藏量日益減少,尋找其他符合經濟效益的替代能源,是目前非常重要的議題。高分子太陽能電池(PSCs)因可以用塗佈或Roll-to-Roll方式製作,可大面積化以及可撓曲性,製程簡單、成本低廉,因而受到廣泛的注意,D-A (D = Donor; A = Acceptor)共聚物一般具有較高的光吸收係數,且其光電性質可藉由改變D或A的結構(或強度)而調整,常用於作為有機太陽能電池主動層中的P-型材料。本篇論文設計以((2-ethylhexyl)oxy) Benzo[1,2-b:4,5- b']-Dithiophene (BDT) Donor單元搭配(4-(hexyloxy)phenyl)-Quino- xaline (Q)或(4(hexyloxy)phenyl)Pyrido[3,4-b]pyrazine (P) Acceptor單元,並加入了Thiophene (T)或3-Hexylthiophene (RT)進行結構修飾,合成出可作為PSCs主動層P-型材料的六個共聚物,PBDTQ、PTBDTQ、PRTBDTQ、PBDTP、PTBDTP以及PRTBDTP,探討不同Acceptor單元與主鏈修飾對於共聚物光電性質的影響,並搭配N-型材料奈米碳球PC71BM混摻為主動層,組裝成高分子太陽能電池並測試元件光電表現,其中以PTBDTP作為主動層所組裝的反相太陽能電池具有最高光電轉換效率,為4.40%。
The gradually decrease in the fossil fuel reserves pushes the scientists to search for alternative cost-effective energy resources. Polymer solar cell (PSC) which can be fabricated by spin-coating or roll-to-roll processes is one of the potential further green energy resource due to some advantages such as light-weight, mechanical flexibility, simple processing, low cost, and large-area device can be fabricated by roll-to-roll method. D-A (D: Donor; A: Acceptor) copolymers which generally having high absorption coefficient and adjustable (by donor and acceptor units) optical properties, have been widely used as a P-type semiconductors in the active layer of PSCs. In this thesis we designed and synthesized six new D-A copolymers including PBDTQ、PTBDTQ、PRTBDTQ、PBDTP、PTBDTP and PRTBDTP. These copolymers were synthesized by stille coupling of ((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']- dithiophene (BDT) donor unit with (4-(hexyloxy)phenyl)quinoxaline (Q) or (4(hexyloxy)phenyl)pyrido[3,4-b]pyrazine (P) acceptor unit. Furthermore, thiophene (T) or 3-hexylthiophene (RT) was also introdued in the main chain to adjust the optical property of the copolymers. The effects of the acceptor unit and side chain modifications on the optoelectronic properties of copolymers were investigated. The bulk heterojunction (BHJ) polymer solar cells based on these copolymers fabricated via solution process were also explored. When PC71BM was used as a N-type material, PTBDTP based inverted BHJ device has the maximum efficiency of 4.40%.
[1] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. “Solar Cell Efficiency Tables (Version 43)”, Prog. Photovolt. Res. Appl. 2014, 22, 1-9.
[2] Ghosh, A. K.; Feng, T. “Merocyanine Organic Solar Cells”, J. Appl, Phys. 1978, 49, 5982-5989.
[3] Onsager, L. “Initial Recombination of Ions”, Phys. Rev. 1938, 54, 554-557.
[4] Tang, C. W. “Two‐Layer Organic Photovoltaic Cell”, Appl. Phy. Lett. 1986, 48, 183-185.
[5] Yu, G.; Zhang, C.; Heeger, A. J. ”Dual-Function Semiconducting Polymer Devices: Light-Emitting and Photodetecting Diodes”, Appl. Phys. Lett. 1994, 64, 1540-1542.
[6] Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. “Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/C- 60 Heterojunction Photovoltaic Cell”, Appl. Phys. Lett. 1996, 68, 3120-3122.
[7] Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science. 1995, 270, 1789-1791.
[8] Forrest, S. R. “Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques”, Chem. Rev. 1997, 97, 1793-1896.
[9] Miranda, P. B.; Moses, D.; Heeger, A. J. “Ultrafast Photogeneration of Charged Polarons in Conjugated Polymers”, Phys. Rev. B 2001, 64, 081201-1-081201-4.
[10] Armstrong, N. R.; Wang, W.; Alloway, D. M.; Placencia, D.; Ratcliff, E.; Brumbach, M. “Organic/Organic′ Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices”, Macromol. Rapid Commun. 2009, 30 , 717-731.
[11] Germack, D. S.; Chan, C. K.; Hamadani, B. H.; Richter, L. J.; Fischer, D. A.; Gundlach, D. J.; DeLongchamp, D. M. “Substrate-Dependent Interface Composition and Charge Transport in Films for Organic Photovoltaics”, Appl. Phys. Lett. 2009, 94, 233303-1-233303-3.
[12] Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C.-S.; Yang, Y. “Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells”, Adv. Funct. Mater. 2009, 19, 1227-1234.
[13] Yao, Y.; Hou, J.; Xu, Z.; Li, G.; Yang, Y. “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells”, Adv. Funct. Mater. 2008, 18, 1783-1789.
[14] Hau, S. K.; Yip, H.-L.; Baek, N. S.; Zou, J.; O’Malley, K.; Jen, A. K.-Y. “Air-Stable Inverted Flexible Polymer Solar Cells Using Zinc Oxide Nanoparticles as an Electron Selective Layer”, Appl. Phys. Lett. 2008, 92, 253301-1-253301-3.
[15] Lee, T. W.; Noh, T.; Choi, B. K.; Kim, M. S.; Shin, D. W.; Kido, J. “High-Efficiency Stacked White Organic Light-Emitting Diodes”, J. Appl. Phys. Lett. 2008, 92, 043301-1-043301-3.
[16] Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q. “A Review of Polymer Multijunction Solar Cells”, Energy Environ. Sci. 2010, 3, 867–883.
[17] Li, G.; Zhu, R.; Yang, Y. “Polymer Solar Cells”, Nature Photonics. 2012, 6, 153-161.
[18] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency”, Adv. Mater. 2006, 18, 789–794.
[19] Cheng, Y. J.; Yang, S. H.; Hsu, C. S. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev. 2009, 109, 5868–5923.
[20] Cheng, Y.; Yang, S.; Hsu, C. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev. 2009, 109, 5868-5923.
[21] Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L.
“For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%”, Adv. Mater. 2010, 22, E135–E138.
[22] Cabanetos, C.; El Labban, A.; Bartelt, J. A.; Douglas, J. D.; Mateker, W. R.; Fréchet, J. M. J.; McGehee, M. D.; Beaujuge, P. M. “Linear Side Chains in Benzo[1,2-b:4,5-b′]dithiophene−Thieno[3,4-c]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance”, J. Am. Chem. Soc. 2013, 135, 4656−4659.
[23] Duan, R.; Ye, L.; Guo, X.; Huang, Y.; Wang, P.; Zhang, S.; Zhang, J.; Huo, L.; Hou, J. “Application of Two-Dimensional Conjugated Benzo[1,2-b:4,5- b′]dithiophene in Quinoxaline-Based Photovoltaic Polymers”, Macromolecules. 2012, 45, 3032−3038.
[24] Zhang, M.; Guo, X.; Ma, W.; Zhang, S.; Huo, L.; Ade, H.; Hou, J. “An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells”, Adv. Mater. 2014, 26, 2089–2095.
[25] Liao, S. H.; Jhuo, H. J.; Yeh, P. N.; Cheng, Y. S.; Li, Y. L.; Lee, Y. H.; Sharma, S.; Chen, S. A. “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer”, Scientific Reports, 2014 ,4, 6813-1-6813-7.
[26] Jiang, J. M.; Lin, H. K.; Lin, Y. C.; Chen, H. C.; Lan, S. C.; Chang, C. K.; Wei, K. H. “Side Chain Structure Affects the Photovoltaic Performance of TwoDimensional Conjugated Polymers”, Macromolecules. 2014, 47, 70−78.
[27] Zhang, X.; Shim, J. W.; Tiwari, S. P.; Zhang, Q.; Norton, J. E.; Wu, P. T.; Barlow, S.; Jenekhe, S. A.; Kippelen, B.; Bredas, J. L.; Marder, S. R. “Dithienopyrrole–Quinoxaline/Pyridopyrazine Donor–Acceptor Polymers: Synthesis and Electrochemical, Optical, Charge-Transport, and Photovoltaic Properties”, J. Mater. Chem. 2011, 21, 4971-4982.
[28] Chen, H. C.; Chen, Y. H.; Liu, C. C.; Chien, Y. C.; Chou, S. W.; Chou, P. T. “Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%”, Chem. Mater. 2012, 24, 4766−4772.
[29] Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells”, J. Am. Chem. Soc. 2013, 135, 1806−1815.
[30] Wu, J. S.; Cheng, S. W.; Cheng, Y. J.; Hsu, C. S. “Donor–Acceptor Conjugated Polymers Based on Multifused Ladder-Type Arenes for Organic Solar Cells”, Chem. Soc. Rev. 2015, 44, 1113-1154.
[31] He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells”, Adv. Mater. 2011, 23, 4636–4643.
[32] Milstein, D.; Stille, J. K. “A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium”, J. Am. Chem. Soc. 1978, 100, 3636-3638.
[33] Santos, L. S.; Rosso, G. B.; Pilli, R. A.; Eberlin, M. N. “The Mechanism of the Stille Reaction Investigated by Electrospray Ionization Mass Spectrometry”, J. Org. Chem. 2007, 72, 5809-5812.
[34] Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. “Stille Polycondensation for Synthesis of Functional Materials”, Chem. Rev. 2011, 111, 1493–1528.
[35] Bao, Z.; Chan, W.; Yu, L. “Synthesis of Conjugated Polymer by the Stille Coupling Reaction”, Chem. Mater. 1993, 5, 2-3.
[36] Osswald, T. A.; Baur, E.; Brinkmann, S.; Oberbach, K.; Schmachtenberg, E. “International Plastics Handbook: 4th edition”, Hanser Gardner Pubilcations, Cincinatti, 2006.
[37] 國立臺灣大學化學系名譽教授蔡蘊明。《完美的聚合物晶體》, http://highscope.ch.ntu.edu.tw/wordpress/?p=52090