| 研究生: |
許嚴達 Yen-ta Hsu |
|---|---|
| 論文名稱: |
採用平板鐵氧體磁芯電感器之升壓式功率因數修正交直流轉換器設計 Design of a Boost Power Factor Correction AC/DC Converter using Planar Ferrite Core Transformer |
| 指導教授: |
林法正
Fa-jeng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系在職專班 Executive Master of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 功率因數 、升壓功率因數校正電路 、平板鐵氧體磁芯電感器 |
| 外文關鍵詞: | Power Factor, Boost PFC circuit, Planar Transformers |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著世界各國對於消費性電器之功率因數的要求制式化,交流轉直流電源轉換器必須符合如EN61000-3-2、Energy Star等各項國際安全規範才可行銷世界各地。考量升壓功率因數校正電路所呈現之總諧波失真值最低、可達最高的功率因數值,本論文採用此電路架構,以設計符合400V的高電壓輸出之應用。為呼應學界與業界逐漸流行的平面被動元件技術,本論文採用平板鐵氧體磁芯電感器使升壓功率因數校正電路達到高功率密度,滿足降低整體系統體積的優點。
本論文首先將探討功率因數與總諧波失真之關聯性與其物理意義;接者逐一介紹被動式功因校正電路、主動式功因校正電路,並比較降壓功因校正電路與升壓功因校正電路之優缺點、單級與雙級式高功率因數轉換器之差異。另外,本論文亦探討升壓功率因數校正電路在連續與非連續導通模式之操作之行為,並逐一介紹功因校正電路之各子電路區塊,再對升壓功率因數校正電路進行小訊號模型之分析。對於所採用的平板鐵氧體磁芯電感器本論文亦詳加以介紹。
最後,為了驗證本論文所提之設計,透過電路模擬與實際量測結果可驗證本升壓功率因數校正電路在各種不同輸入電壓、不同輸出功率的情況下,其功率因數值與總諧波失真值皆符合國際規定、其高轉換效率滿足高功率、高電壓需求之消費性電器之應用。
With the requirement of Power Factor (PF) are being set to standards, commercial electrical products must pass globally recognized standards such as the European EN61000-3-2 and the Energy Star Program Requirements to be sold around the globe. Under the consideration for minimum Total Harmonic Distortion (THD) and maximum PF, the Boost Power Factor Correction (PFC) topology is used to meet the demands for applications with a 400 V high voltage output. To take advantage in the recent advance in planar passive components, a planar ferrite core transformer is used with the proposed Boost PFC circuit, which allows high power density and decreases the overall volume of the system.
This thesis begins with the discussion regarding the relationship and physical significance between THD and PF. Comparisons between passive and active PFC circuits, Buck PFC circuits and Boost PFC circuits, single stage PFC circuits and multi stage PFC circuits, are given respectively. This thesis also compares the differences in circuit operation regarding the continuity of transformer current. The operations of each circuit blocks are given in detail, and a small-signal model is derived for analysis. The metal core planar transformer technology is also introduced.
Finally, in order to verify the design proposed in this thesis, circuit simulation and actual measurement are conducted. Simulation results suggest that the proposed PFC circuit provides sufficient PF and THD ratings for many major international standards under various input voltage and output loading conditions. Its high power conversion efficiency also satisfies the need for commercial electrical products requiring high input voltage and demands high power consumption.
[1] M. H. Rashid, Power Electronics: Circuits, Devices and Applications, Prentice Hall, 2003
[2] European Power Supply Manufacturers Association, Harmonic Current Emissions, [Online]. Available: http://www.epsma.org/pdf/PFC%20Guide_
November%202010.pdf
[3] Energy Star, Program Requirements for Computers, [Online]. Available:
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/computer/Version5.0_Computer_Spec.pdf
[4] D. Hart, Power Electronics, McGraw-Hill, 2010
[5] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, Wiley, 2002
[6] Wikipedia, Power Factor, [Online]. Available: http://en.wikipedia.org/
wiki/Power_factor
[7] PowerStudis.com, Power Factor – The Baiscs, [Online]. Available: http://standby.iea-4e.org/files/otherfiles/PowerFactorBasics.pdf
[8] Y. Fukuda, T. Inoue, T. Mizoguchi, S. Yatabe, and Y. Tachi, “Planar inductor with ferrite layers for dc–dc converter,” IEEE Trans. Magn., vol. 39, pp. 2057–2061, July 2003.
[9] I. Kowase, T. Sato, K. Yamasawa, and Y. Miura, “A planar inductor using Mn–Zn ferrite/polyimide composite thick film for low-voltage and large-current dc–dc converter,” IEEE Trans. Magn., vol. 41, pp. 3991-3993, Oct. 2005.
[10] J. J. Lee, Y. K. Hong, S. Bae, J. H. Park, J. Jalli, G. S. Abo, R. Syslo, B. C. Choi, and G. W. Donohoe, “High Q-factor Ni-Zn ferrite planar inductor,” IEEE Trans. Magn., vol. 46, pp. 2417–2420, Jun. 2010.
[11] S. Bae, Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, B. C. Choi , and G. W. Donohoe , “High Q Ni-Zn-Cu ferrite inductor for on-chip power module,” IEEE Trans. Magn., vol. 45, pp. 2773–2773, Oct. 2009.
[12] H. Ito , A. Takeuchi , S. Okazaki , H. Kobayashi , Y. Sugawa , A. Takeshima , M. Sonehara , N. Matsushita , and T. Sato, “Fabrication of planar power inductor for embedded passives in LSI package for hundreds megahertz switching DC–DC buck converter,” IEEE Trans. Magn., vol. 47, pp. 3204-3207, Oct. 2011.
[13] Z. Ouyang, G. Sen, O. C. Thomsen, and M. A. E. Andersen, “Analysis and design of fully integrated planar magnetics for primary–parallel isolated boost converter,” IEEE Trans. Ind. Electron, vol. 60, pp. 494-508, Feb. 2013.
[14] Y. Mano, S. Bae, J. Moon, H. Jung, and Y. Oh, “Planar inductor with ferrite layers for DC-DC converter,” Proc. IEEE Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, pp. 891-894, 2005
[15] Z. Ouyang, Z. Zhang, O. C. Thomsen, M. A. E. Andersen, O. Poulsen, and T. Björklund, “Planar integrated magnetics design in wide input range DC-DC converter for fuel cell application,” Proc. IEEE Intl. Conf. Energy Conversion Congress and Exposition, pp. 4611-4618, 2010
[16] M. Rabia, H. Azzedine, and T. Lebey, “Modeling and dimensioning of a planar inductor for a monolithic integration,” Proc. IEEE Intl. Power and Energy Engineering Conf., pp. 1-9, 2011
[17] Y. T. Chena, C. H. Hungb, Y. C. Leea, L. C. Lianga, and W. T. Yanga, “Electrical and temperature characterization of flexible planar inductor,” Proc. IEEE Intl. Microsystems, Packaging, Assembly and Circuits Technology Conf., pp. 363-366, 2012
[18] P. Špánik, I. Feno, and G. Kácsor, “Using Planar Transformers In Soft Switching DC/DC Power Converters”, Advances in Electrical and Electronic Engineering, [Online]. Available: http://dspace.vsb.cz/bitstream/
handle/10084/AEEE-2004-3-1-59-sp
[19] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Kluwer Academic Publishers, 2001.
[20] E. Kreyszig, Advanced Engineering Mathematics, Wiley, 2011
[21] Artesyn, Power Factor Correction, [Online]. Available: http://www.
coolpowersolutions.fi/Library/Power_Factor_C.pdf
[22] 王郁凱, 新型低電壓應力之單級高功因AC/DC電力轉換器之分析與設計, 國立成功大學工程科學學系, 碩士論文, 2007
[23] J. Yang, J. Zhang, X. Wu, Z. Qian, and M. Xu, “Performance comparison between buck and boost CRM PFC converter,” Proc. IEEE Control Modeling of Power Electron. Conf., pp.1-5, 2010
[24] J. Chen , R. W. Erickson, and D. Maksimovic, “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications,” Proc. IEEE Applied. Power Electron. Conf., pp. 343-349, 2001
[25] 蕭立揚, 具降低輸出電壓漣波之單級返馳式功因校正電路,國立中山大學電機工程學系, 碩士論文, 2009
[26] D. Dalai, Design Considerations for Active Clamp and Reset Technique , http://www.ti.com/lit/ml/slup112/slup112.pdf
[27] Wikipedia, Flyback converter, [Online]. Available: http://en.wikipedia.org/
wiki/ Flyback_converter
[28] Wikipedia, Opto-isolator, [Online]. Available: http://en.wikipedia.org/wiki/ Opto-isolator
[29] Top LED Ltd., Isolated power supply or non-isolated power supply", [Online]. Available: http://www.top-led-light.com/our-blog/led-tube-lights/
item/isolated-power-supply-or-non-isolated-power-supply.html
[30] B. Keogh, Power Factor Correction Using the Buck Topology: Efficiency Benefits and Practical Design Considerations, [Online]. Available: http://focus.ti.com/asia/download/Topic_4_Keogh_34pages.pdf
[31] Taiwan Semiconductor Manufacturing Company, Power IC, [Online]. Available: http://www.tsmc.com/dedicatedFoundry/technology/
[32] Wikipedia, Inrush current, [Online]. Available: http://en.wikipedia.org/wiki/ Inrush_current
[33] 施奕丞, 低電壓應力單級隔離式高功因電力轉換器之模式分析與控制器設計, 國立成功大學工程科學學系, 碩士論文, 2003
[34] 葉怡君, 新型零電流零電壓轉移柔切式高功因AC/DC整流器,國立成功大學工程科學學系, 碩士論文, 2003
[35] 陳學展, 新型順向式單級高功因電力轉換器之分析與控制器設計, 國立成功大學工程科學學系, 碩士論文, 2004
[36] Fairchild, Power Factor Correction (PFC) Basics, [Online]. Available: http://www.fairchildsemi.com/an/AN/AN-42047.pdf
[37] Fairchild, AN-6078SC Application Note, [Online]. Available: http://www.
datasheetarchive.com/AN-6078SC%20fairchild%datasheet.html
[38] Fairchild, AN-6961Application Note, [Online]. Available: http://www.
fairchildsemi.com/an/AN/AN-6961.pdf
[39] T. Allag and N. Tseng, Understanding Compensation Network for the TPS54120, http://www.ti.com/general/getliterature.tsp?literature=slva53a&
fileType=pdf
[40] X. Xu, Next Generation Power Factor Correction (PFC) Regulator Based on Silicon Carbide (SiC) Power Devices and New Control Strategy, North Carolina State University Raleigh, 博士論文, 2008