跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳定偉
Ting-Wei Chen
論文名稱: 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
指導教授: 鍾雲吉
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 65
中文關鍵詞: 液體中顆粒體崩塌行為分析CFD-DEM模擬技術實驗驗證黏滯效應傳輸性質
外文關鍵詞: granular column in fluid, collapsing behavior, combined CFD-DEM model, experimental validation, viscosity effect, transport property
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為,在物理實驗中進行水中顆粒體崩塌實驗,使用 影像處理技術量測水中顆粒體的速度分佈與顆粒流的表面輪廓,並分析流量與時間的關係。同時本文提出二相流離散元素模型,並考慮背景阻尼用以消散二相流顆粒系統中過多的能量,模擬對應的水中顆粒體崩塌實驗。研究結果顯示,該二相流離散元素模型配合適當的背景阻尼,其電腦模擬結果與實驗結果相當吻合,吻合的物理量包括壁面沿深度方向的流速分佈,出口處的流量分佈,顆粒流平移速度向量場及歷時表面輪廓分佈。接著分析驗證合理的二相流離散元素電腦模擬結果,進一步探討二相流顆粒系統中的內部物理量,同時並比較乾顆粒系統中的內部物理量,最後探討液體黏滯係數對液體中顆粒體崩塌行為的影響。
    本研究考慮顆粒體在四種液體(空氣,水,橄欖油及蓖麻油)中的崩塌行為,得知邊璧處平移速度剖面皆為SSH (Sidewall Stabilized Heap) 流態,但顆粒體在空氣,水,橄欖油及蓖麻油中,其中心處的平移速度剖面皆為混合型態,而顆粒體在空氣中較其他三種介質更快速地演化成SSH流態。顆粒體在四種液體中,其旋轉速度剖面皆呈現SSH流態,水平方向的旋轉速度均甚小於厚度及垂直方向的旋轉速度,且在邊璧處的垂直方向旋轉速度均大於中心處的旋轉速度。研究結果亦顯示顆粒體的平移速度及旋轉速度隨著液體黏滯係數增加而減少,流量變化也隨著黏滯係數增加而下降。


    The purpose of the study is to investigate granular column collapse in fluid experimentally and numerically. Experiments on granular column collapse in the water environment were conducted, and image processing technique was employed to measure velocity profile and surface profile of granular flow in the water as well as the flow rate at the outlet. In addition, a two-phase flow discrete element method (combined CFD-DEM modeling) was proposed to simulate the corresponding experiments. In the combined CFD-DEM simulation, a background damping mechanism was incorporated to dissipate excessive energy of particulate system. The study shows that the simulations produce reasonable agreement with experiments for the velocity profiles, flow rate at the outlet, translational velocity field and surface profiles. The validated numerical model was further used to explore internal physical properties of granular assembly. Four kinds of fluid, including air, water, olive oil and castor oil, were also used to explore the effect of fluid viscosity on granular column collapse.
    The results show that all of the translational velocities at the sidewall exhibit the SSH (Sidewall Stabilized Heap) rheology. However, the translational velocities at the center of the chute show a mixed profile in the air, water, olive oil and castor oil, and the velocity profile in the air evolves to the SSH rheology more quickly than those in other conditions. The angular velocities in the four kinds of fluid all exhibit the SSH rheology. The angular velocities in the horizontal direction are much smaller than those in the vertical and depth directions. In addition, the angular velocities in the vertical direction at the sidewalls are larger than those at the center of the chute. The results also indicate that the translational and angular velocities and the flow rate decline with the increase of viscosity.

    摘要 i ABSTRACT ii TABLE OF CONTENTS iii LIST OF TABLES iv LIST OF FIGURES v 1. INTRODUCTION 1 1.1 Literature Review 1 1.2 Research Motivation 4 2. EXPERIMENTAL SETUP AND DISCRETE ELEMENT METHOD 5 2.1 Experimental Setup and Procedure 5 2.1.1 Experimental setup 5 2.1.2 Imaging processing method 6 2.1.3 Analysis of velocity profile and flow rate 6 2.2 Discrete Element Method 7 2.2.1 Mathematical formulation for two-phase flow 7 2.2.2 Contact force model 10 2.2.3 DEM frame work 12 2.2.4 Critical time step 14 2.2.5 Background damping 15 2.2.6 Computational grid and boundary conditions 15 3. RESULT AND DISCUSSION 17 3.1 Comparision Between Experimental Result and DEM Simulation 17 3.1.1 Velocity profile 17 3.1.2 Flow rate 18 3.1.3 Translational velocity field at sidewall 18 3.1.4 Surface profile 19 3.2 Exploration of internal physical properties 19 3.2.1 Normalized translational velocity profile 19 3.2.2 Normalized angular velocity profile 20 3.2.3 Normalized velocity profile 20 3.3 Effect of fluid viscosity on flow motion 21 3.3.1 Normalized translational velocity profile 21 3.3.2 Normalized angular velocity profile 22 3.3.3 Flow rate 23 4. CONCLUSIONS 24 REFERENCES 26

    1. Tsuji, Y., Tanaka, T., Ishida, T. (1992). Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology 71, 239-250.
    2. Tsuji, Y., Kawaguchi, T., Tanaka, T. (1993). Discrete particle simulation of two-dimensional fluidized-bed. Powder Technology 77, 79-87.
    3. Fraccarollo, L., Larcher, M., Armanini, A. (2007). Depth-averaged relations for granular-liquid uniform flows over mobile bed in a wide range of slope values. Granular matter 9, 145-157.
    4. Doppler, D., Gondret, P., Loiseleux, T., Meyer, S., Rabaud, M. (2007) Relaxation dynamics of water-immersed granular avalanches. Journal of Fluid Mechanics 577, 161-181.
    5. Pailha, M., Nicolas, M., Pouliquen, O. (2008) Initiation of underwater granular avalanches: Influence of the initial volume fraction. Physics of Fluids 111701.
    6. Pont, S.C., Gondret, P., Perrin, B., Rabaud, M. (2003). Granular avalanches in fluids. Physical Review Letters 90,044301.
    7. Rondon, L., Pouliquen, O., Aussillous, P. (2011). Granular collapse in a fluid: Role of the initial volume fraction. Physics of Fluids. 23,073301.
    8. Armanini, A., Fraccarollo, L., Larcher, M. (2008). Liquid-granular channel flow dynamics. Powder Technology 182, 218-227.
    9. Pailha, M., Pouliquen, O. (2008) A two-phase flow description of the initiation of underwater granular avalanches. Journal of Fluid Mechanics 633, 115-135.
    10. Topin, V., Dubois, F., Monerie, Y., Perales, F., Wachs, A. (2011). Micro-rheology of dense particulate flows: Application to immersed avalanches. Journal of Non-Newtonian Fluid Mechanics 166, 63-72.
    11. Topin, V., Monerie, Y., Perales, F., Radjai, F. (2012). Collapse dynamics and runout of dense granular materials in a fluid. Physical Review Letters 109, 188001.
    12. Capart, H., Young, D.L., Zech, Y. (2002). Voronoi imaging methods for the measurement of granular flows. Experiments in Fluids 32,121-135.
    13. Chou, H.T., Lee, C.F., Chung, Y.C., Hsiau, S.S. (2012). Discrete element modelling and experimental validation for the falling process of dry granular steps. Powder Technology 231, 122-134.
    14. Cundall, P.A., Strack, O.D.L. (1979). Discrete numerical-model for granular assemblies. Geotechnique 29, 47-65.
    15. Bouillard, J.X., Lyczkowski, R.W., Gidaspow, D. (1989). Porosity distributions in a fluidized bed with an immersed obstacle. AIChE Journal 35, 908-922.
    16. Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J., Van Swaaij, W.P.M. (1996). Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chemical Engineering Science 51, 99-118.
    17. Thornton, C., Randall, C.W. (1998). Applications of theoretical contact mechnaincs to solid particle system simulation. Micromechanics of Granular Materials (Eds, Satake, M., Jenkins, J.T.). 133-142.
    18. Luding, S., (2008). Cohesive, frictional powders: contact models for tension. Granular Matter 10, 235-246.

    QR CODE
    :::