跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝明益
Ming-I Hsieh
論文名稱: 快速有向性的Steiner Tree近似演算法
A Faster Approximation Algorithm for Directed Steiner Tree Problem
指導教授: 吳曉光
Eric Hsiao-Kuang Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 63
中文關鍵詞: 群撥演算法
外文關鍵詞: Multicast Routing, Steiner Tree
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要:
    在本論文中,我們提出一個新的有向性的Steiner Tree 近似演算法.Steiner Tree 的問題在於:給一個有向性的圖G=(V,E,c)這裡的c: E->R+ 是一個將邊轉換為值的函式,一個點的子集合(也就是terminals),及一個根vr ,有向性的Steiner Tree 問題在於如何尋找一個spanning tree 以根為起使點並連結到所有的terminals,並且使得spanning tree 上邊值的合為最小.DSP(Directed Steiner Tree Problem)常在一對多(Multicast)的資料傳送網路中被提起來改進其傳送時的成本.在本篇文章之前,Charikar 等人的DSP 演算法是在IDMR 方面最有名的.這個演算法能在O(n^lk^{2l-2}log n+m) 的時間內取得l(l-1)k^{1/l}的近似值的解(這裡的l 可是是任何大於1的值,n 是點的數量, 是邊的數量).不過這個演算法需要很大量的計算效能.而這份論文提供一個更快的近似演算法,能在O(P^n_lP^k_l+n^2k+nm)的時間內求得相同等級或更好的近似解.


    Abstract
    Given a weighted directed graph G = (V,E,c), where c : E -> R+ isan edge length function, a subset X of vertices (terminals), and a root vertex vr, directed Steiner tree problem (DSP) asks for a minimum cost tree which spans paths from root vertex vr to each terminal. DSP is often raised in one-to-many (Multicast) data delivering network to improve the cost of the distribution tree1. Before this article, Charikar et al’s DSP algorithm is well known for IDMR. It achieves an approximation ratio of 1(l−1)k^(1/l) in O(n^lk^{2l-2)logn+m) times for any fixed level l > 1, where l is the level of the tree produced by the algorithm, n is the number of vertices, |V |, and k is the number
    of terminals, |X|. Charikar et al’s DSP algorithm is useful to improve for IDMR. However it requires a great amount of computing power. This thesis provides a faster approximation algorithm based on ideas of Charikar et al’s DSP algorithm with better time complexity,
    O(P^n_lP^k_l+n^2k+nm), and a better approximation ratio for any level l > 1.

    Table of Contents Abstract ii Table of Contents iii 1 Introduction 1 2 Related Works 7 2.1 Compress Graph and Properties of Directed Steiner Tree Algorithm . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Introduction to Zelikovsky’s l-restricted tree . . . . . . 11 2.3 Charikar et al’s DSP Algorithm and Proof . . . . . . . 12 2.3.1 Charikar et al’s DSP Algorithm . . . . . . . . . 12 2.3.2 Charikar et al’s proof for approximation ratio . 14 2.4 Introduction to Roos’ DSP Algorithm . . . . . . . . . . 15 3 Directed Steiner Tree Problem 16 3.1 Preprocess and Merge Operator . . . . . . . . . . . . . 16 3.2 Greedy algorithm for k-shortest path tree . . . . . . . . 19 3.3 To choose the better density (l − 1)-level tree . . . . . 20 3.4 To construct a set of l-level tree with 1, 2, ..., k terminals by the better density l − 1-level tree . . . . . . . . . . . 22 3.5 To construct a l-level tree with k terminals . . . . . . . 24 3.6 Analysis for Time Complexity and Space Complexity . 25 4 Implementation and Test Results 27 5 Approximation Ratio 36 5.1 Approximation Ratio Functions . . . . . . . . . . . . . 36 5.2 Greedy algorithm’s approximation ration function and Ideal approximation ratio function . . . . . . . . . . . . 38 5.3 Charikar et al’s approximation ratio function . . . . . . 39 5.4 Modified Charikar et al’s approximation ratio function 40 5.5 Charikar et al’s approximation ratio function with Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . 41 5.6 The Density Functions . . . . . . . . . . . . . . . . . . 43 5.7 The approximation ratio function of our approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.8 Comparison between those approximation ratio functions 52 6 Conclusions 54

    [1] F. K. Hwang, D. S. Richards, and P. Winter, “The steiner tree
    problem,” North-Holland and 1992.
    [2] M. Garey and D. Johnson, “Computers and intractability: A
    guide to the theory of np-completeness,” Freeman and San Francisco
    (1978).
    [3] M. Bern and P. Plassman, “The steiner problems with edge
    lengths 1 and 2,” Information Processing Letters and 32:171-176
    (1989).
    [4] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha,
    and M. Li, “Approximation algorithms for directed steiner problems,”
    vol. 33, pp. 73–01, 1999.
    [5] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for
    steiner trees,” Acta Informatica and 15 and pp. 141-145 (1981).
    [6] P. Berman and V. Ramaiyer, “Improved approximation algorithms
    for the steiner tree problem,” in Journal of Algorithms
    and 17:381-408 (1994).
    [7] H. Takahashi and A. Matsuyama, “An approximate solution for
    the steiner problem in graphs,” Math. Japonica and Vol. 24 and
    pp.573-577 (1980).
    [8] M. Karpinsky and A. Zelikovsky, “New approximation algorithms
    for the steiner tree problem,” tech. rep. Technical Report and
    Electronic Colloquium on Computational Complexity (ECCC):
    TR95-030 (1995).
    [9] S. Ramanathan, “Multicast tree generation in networks with
    asymmetric links,” IEEE Infocom’96 and IEEE/ACM Transactions
    on Networking and Vol.4 and pp.558-568 (1996).
    [10] H. Salama, “Evaluation of multicast routing algorithms for realtime
    communication on high-speed networks,” IFIP Sixth Internation
    Conference on High Performance Networking and pp.27-42
    (1995).
    [11] P. Winter, “Steiner problem in networks: A survey,” Networks
    and 17:129-167 (1987).
    [12] A. Zelikovsky, “A series of approximation algorithms for the
    acyclic directed steiner tree problem,” vol. 18, pp. 99–110, 1997.
    [13] S. Roos, “Scheduling for remove and other partially connected
    architectures,” Internal Report. (2001).
    [14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction
    to algorithms,” 26.3.

    QR CODE
    :::