跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱彥丞
Yan-Cheng Zhu
論文名稱: 板式熱交換器內部之兩相分布模擬與流動分布不均勻性分析
Numerical Analysis of Two Phase Flow and Flow Maldistribution in Plate Heat Exchangers
指導教授: 吳俊諆
Jun-Qi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 計算流體力學分布器流動分布不均勻山型紋板式熱交換器
外文關鍵詞: Flow maldistribution, Chevron corrugation, Distributor., Computational fluid dynamics, Plate heat exchanger
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年的板式熱交換器流動分布研究中,對於兩相流分布多以實驗方式分析,由於板式熱交換器內部流場不易觀察,學者均改用結構較簡單之平板管或者圓管代表真實板片。本研究使用計算流力軟體ANSYS FLUENT將業者開發的K050山型紋板式熱交換器真實板片組成之流場建模,探討兩相流與流動分布不均勻現象,分析分布器開口方向對流場影響及在多流道流場中分布器對氣液分布之影響。
    本研究分為兩部份,第一部份藉由實驗數據比對,以空氣與水為工作流體來研究不同分布器開口方向(12點鐘、3點鐘、4點鐘、5點鐘、6點鐘、9點鐘方向)對於單一流道兩相流現象。模擬結果顯示,3點鐘、4點鐘、6點鐘方向有較好的分布,在低雷諾數(Rel =500)時,分布器開口方向為3點鐘之案例的氣體分布較不均勻,而分布器開口方向為6點鐘有較佳的分布。在Rel =1500的案例中,3點鐘與6點鐘方向的案例均有較佳的流場分布,且標準差降低許多;整體來說增加雷諾數使流場轉變為紊流改善了流動不均勻情形。在Rel =3000的案例中,則是4點鐘方向的案例有最佳的流動分布,若考慮到壓降以及冷熱側流體流動路徑的影響,4點鐘方向是較佳的分布器入口設計。
    第二部份研究是針對10流道之K050板式熱交換器流場,研究分布器對於多流道之流動分布不均勻性的改善效果。模擬結果顯示,在未使用分布器的多流道板式熱交換器中,如果要有較均勻的汽液分布,必須使流場有較高的雷諾數,若是熱交換器在雷諾數小於1500的條件下,汽液分布會非常不平均。加入分布器後,汽態冷媒的分布不均勻現象可以獲得有效的改善,但是對於液態冷媒只有在低雷諾數時的效果較佳,當雷諾數升高時,分布器對於液態冷媒的分布不見得有效。


    In the recent years, most of investigations of two phase flow distribution in plate heat exchanger (PHE) were experimental study. Due to complexity of flow and thermal structure inside PHE, researchers used simpler flat/circular tubes to represent the real plate in PHE. This study used the Computational fluid dynamics software ANSYS FLUENT to model an industrial type of K050 chevron corrugation PHE and simulated the two phase flow distribution. Several effects were studied, including two phase flow, flow maldistribution, the operating condition and the direction of the inflow distributor.
    This paper was divided into two parts. First, the air/water two phase flow was investigated for effect of various direction of air inflow distributor (12 clock, 3 clock, 4 clock, 5 clock, 6 clock and 9 clock) in the single channel PHE. Simulation results showed that the direction of 3, 4 and 6 clocks generated better flow distribution. At low Reynolds number (Rel =500), the case of 3 clock had the most uneven flow distribution, while better flow distribution was observed for the case of 6 clock. At medium Reynolds number (Rel =1500), all the three cases (3, 4, 6 clocks) improved their flow distribution with reduced standard deviation of flowrate. It can be concluded that the increase of the Reynolds number which transformed the flow into turbulent and improved the flow distribution across channels inside PHE. At the high Reynolds number (Rel =3000), the case of 4 clock had the best even flow distribution. Finally, consider the effects of the flow passages on the hot/cold sides and the pressure drop, air inflow at 4 clock of the distributor was recommended.
    The second part was investigation for the improvement of two phase flow distribution in a 10-channel PHE with an inflow distributor. Numerical results showed that at the multi-channels PHE without the distributor, the flow must operated at higher Reynolds number in order to have better flow distribution. If the PHE operated under Reynolds number lower than 1500, the vapor-liquid distribution can very uneven.
    With the inflow distributor added, the maldistribution of the vapor phase improved significantly. Yet the flow distribution of liquid phase only worked at low Reynolds number condition. As Reynolds number increased, the inflow distributor was not that effective for liquid flow distribution.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 符號說明 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 3 1.3 研究目的 6 1.4 論文架構 7 第二章 文獻回顧 8 2.1 兩相流型態 8 2.2 熱交換器中之兩相流動型態 9 2.3 熱交換器中之分布不均勻現象 12 第三章 數值計算 14 3.1 計算流體力學簡介 14 3.2 兩相流模型 14 3.2.1 Euler模型 17 3.2.2 VOF模型 19 3.3 兩相紊流模型簡介 23 第四章 幾何外型、網格與邊界條件 25 4.1 幾何外型與網格 25 4.1.1 K050板片幾何外型 25 4.1.2單流道流動不均勻性分析:流場幾何外型與網格 26 4.1.3多流道流動不均勻性分析:流場之幾何外型與網格 28 4.2 邊界條件 31 4.2.1單流道流動不均勻性分析:流場邊界條件 31 4.2.2多流道流動不均勻性分析:流場邊界條件 32 4.3 計算方法 33 4.4 模擬驗證:網格獨立性分析 34 第五章 結果與討論 36 5.1 單流道流動不均勻性分析 36 5.1.1氣體體積分率分布 36 5.1.2流場速度向量圖與板片中央處氣體速度分布 42 5.1.3流量分布 52 5.2 多流道間流動不均勻性分析 60 5.2.1 無加入分布器設計案例之流量分布與汽液分布 62 5.2.2加入分布器設計案例之流量分布與汽液分布 71 第六章 結果與討論 83 6.1 結論 83 6.2 未來改進方向 84 參考文獻 86

    Asano, H., Takenka, N., Fujii, T., Maeda, N. (2004), “Visualization and void fraction measurement of gas-liquid two phase flow in plate heat exchanger”, Applied Radiation and Isotopes 61: 707-713.
    ANSYS (2009) “ANSYS Fluent user guide”, ANSYS. Inc.
    ANSYS (2009) “ANSYS Fluent theory guide”, ANSYS. Inc.
    Baroczy, C.J. (1966), “A systemic correlation for two phase pressure drop”, Chem. Eng. Progr. Symp. Ser. 62, 232–249.
    Fritz, W. (1935), “Berechnung des maximal von dampfblasen”, Phys. Z., 36, 379.
    Gradeck, M., Lebouche, M. (2000), “Two phase gas-liquid flow in horizontal channels”, Inter. J. Multiphase Flow 26: 435-443.
    Gradeck, M., Lebouche, M. (2000), “Two phase gas-liquid flow in horizontal corrugated channels”, Inter. J, Multiphase Flow 26: 435-443.
    Kim, N. H., Sin, T. R. (2006), “Two-phase flow distribution of air–water annular flow in a parallel flow heat exchanger”, Inter. J. Multiphase Flow 32: 1340–1353.
    Lozano, A., Barreras, F., Fueyo, N., Santodomingo, S. (2008), “The flow in an oil/water plate heat exchanger for the automotive industry”, Applied Thermal Eng. 28: 1109–1117.
    Marchitto, A., Devia, F., Fossa, M., Guglielmini, G., Schenone, C. (2008), “Experiments on two-phase flow distribution inside parallel channels of compact heat exchangers”, Inter. J. Multiphase Flow 34: 128–144.
    Marchitto, A., Fossa, M., Guglielmini, G. (2012), “The effect of the flow direction inside the header on two-phase flow distribution in parallel vertical channels”, Applied Thermal Eng.g 36: 245-251.
    Nilpueng, K., Wongwises, S. (2006), “Flow pattern and pressure drop of vertical upward gas–liquid flow in sinusoidal wavy channels”. Exp. Thermal and Fluid Science 30: 523–534.
    Parvareh, A., Rahimi, M., Alizadehdakhel, A., Alsairafi, A.A. (2010), “CFD and ERT investigation on two-phase flow regimes in vertical and horizontal tubes”, Inter. Communications in Heat and Mass Transfer 37:304–311.
    Sandra, C.K., Schepper, D., Heynderickx, G. J., Marin, G. B. (2008), “CFD modeling of all gas–liquid and vapor–liquid flow regimes predicted by the Baker chart”, Chemical Eng. J. 138: 349–357.
    Vist, S., Pettersen, J. (2004), “Two-phase flow distribution in compact heat exchanger manifolds”, Exp. Thermal and Fluid Science 28: 209–215.
    Vlasogiannis, P., Karagiannis, G., Argyropoulos, P., Bontozoglou, V. (2002), “Air-water two phase flow and heat transfer in a plate heat exchanger”, Inter. J. Multiphase Flow 28: 757-772.
    王啟川(2007),熱交換器設計,五南圖書出版有限公司,台北市。
    曾廣彬(2010),「板式熱交換器之流場模擬與流動分布不均勻態分析」,國立中央大學機械工程研究所,碩士論文。
    孟繁宇(2011),「水-空氣在板式熱交換器內的流動觀察」,國立中央大學機械工程研究所,碩士論文。

    QR CODE
    :::