跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏志安
Chih-An Wei
論文名稱: 聲光可調光濾波器波長轉換器元件之研製
Acoustooptical Tunable Optical Filter Functioned as Wavelength Converter
指導教授: 李清庭
C.T. Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 88
中文關鍵詞: 光波導表面聲波聲光可調光濾波器波長轉換器
外文關鍵詞: acoustooptical tunable filter, wavelength convec
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的是利用半導體的製程技術積體化聲光可調光濾波器之波長轉換器,利用聲光作用,於鈮酸鋰(LiNbO3)晶片上,製作執行TE/TM模轉換器,並與TE/TM分離器積體化,以作為波長轉換器(wavelength conversion)的功能。
    先利用三維光束傳播法電腦程式,模擬得出TE/TM模分離器的最佳參數條件,再利用相位匹配原理(phase matching condition)得出表面聲波的頻率。
    在Z切Y傳播的鈮酸鋰基板上製作TE/TM模分離器,以驗證最初的理論設計,其次製作表面聲波元件,得到與設計上相符合的中心頻率,最後製作整個聲光可調光濾波器之波長轉換器(acoustooptically-tunable optical filter, AOTF),量測其模態轉換,並配合外插量測(heterodyne detection)方法,來驗證波長轉換器確實是有發生功用,並找出最佳的聲波頻率。


    In the dense wavelength division multiplexer network, the blocking probability rises due to possible wavelength contention when two channels at the same wavelength are to be routed at the same output. One method of overcoming this limitation is to converter signals from one wavelength to another. By using the wavelength converter, a large network with dynamic traffic patterns will greatly benefit from wavelength conversion. Wavelength conversion also allows distributing the network control and management into small subnetwork and allows flexible wavelength assignment within the network. Beside, by using wavelength converter and output filter array, the optical space switches can be constructed.
    In this project, we develop an integrated acoustooptical tunable optical filter functioned as wavelength converter used in dense wavelength division multiplexer network. In this wavelength converter, an integrated TE/TM mode converter and TE/TM splitter combination was fabricated in LiNbO3 substrate.

    論文摘要……………………………………………………...………….I 目錄………………………………………………………….………….Ⅱ 圖目………………………………..…………………………….….…..Ⅹ 表目……………………………………………………………….…….Ⅵ 第一章 緒論……………………………………………...………1 1-1 波長轉換器之簡介…...…………………………………..1 1-2 鈮酸鋰晶體之簡介……………………………..…..….3 1-3 內容概述……..………………………………………….4 第二章 理論背景……………………………………………..….5 2-1 聲光可調光濾波器之原理………………………………5 2-2 光波導之相關理論……………………………………….6 2-2.1 平面式薄膜擴散…………………………………...7 2-2.2 通道式薄膜擴散…………………………………...8 2-2.3 鈦在鈮酸鋰中的擴散係數…………...……………9 2-2.4 擴散雜質的濃度與折射率變化量………...………9 2-2.5 鈦濃度與折射率變化量之關係…………………10 2-3 順向耦合器理論…………………………………………11 2-4 表面聲波之原理…………………………………...……13 2-4.1 表面聲波元件…………………………….………14 2-4.2 壓電效應………………………………………….14 2-4.3 表面聲波元件之結構…………………………….15 2-4.4 指叉狀電極轉換器之設計……………………….16 2-5 聲光效應之理論分析…………………………………...17 第三章 元件製程……………………………………………….21 3-1 波長轉換器元件之製作………………………………...21 3-2 TE/TM分離器之製作……………………………………26 3-3表面聲波之製作………………………………………….26 第四章 實驗量測結果………………………………………….28 4-1 TE/TM分離器量測及結果………………………………28 4-2 表面聲波量測及結果…………………………………...29 4-2.1表面聲波元件之量測方法………………………..29 4-2.2表面聲波元件之量測及結果……………………30 4-3 波長轉換器量測及結果………………………………...30 4-3.1波長轉換器元件之量測法………………………..31 4-3.2波長轉換器之量測及結果………………………..33 第五章 結論與討論..……………………….…………………..37 5-1 結論……………………...………………………………37 5-2 討論……………………………………………………...38 參考文獻………………………………………………………………..39

    [1] C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications”, IEEE J. Select. Areas Commun., 8, 948, 1990
    [2] C. A. Brackett, A. S. Acampora, J. Schweitzer, G. Tangonan, M. T. Smith, W. Lennon, K. C. Wang and R. H. Hobbs, “A scalable multiwavelength multihop optical network: A proposal for research on all-optical networks”, J. Lightwave Technol., 11, 736, 1993
    [3] M. J. O’Mahony, “The potential of multiwavelength transmission”, in proc. of ECOC’94, Firenze, Italy, 2, 907, 1994
    [4] K. Sato, S. Okamoto and H. Hadama, “Network performance and integrity enhancement with optical path layer technologies”, IEEE J. Select. Areas Commun., 12, 159, 1994
    [5] D. Chiaroni, “Rack mounted 2.5Gbit/s ATM photonic switch demonstrator” in proc. ECOC’93, Montreux, Switzerland, 3, Thp 12.7, 1993
    [6] T. Durhuus, B. Fernier, P. Garabedian, F. Leblond, J. L. Lafragette, B. Mikkelsen, C. G. Joergensen and K. E. Stubkjaer, “High speed all-optical grating using two-section semiconductor optical amplifier structure”, in Proc. CLEO’ 92, Anaheim CA. U.S.A. CTRS4.
    [7] D. M. Patrick and R. J. Manning, “20 Gbits/s wavelength conversion using semiconductor nonlinearity”, Electron. Lett., 30, 252, 1994
    [8] T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen and K. E. Stubkjaer, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration”, IEEE Photon. Technol. Lett., 6, 53, 1994
    [9] M. C. Tatham, “20nm optical wavelength conversion using nondegenerate four-wave mixing”, IEEE Photon. Technol. Lett., 5, 1303, 1993
    [10] R. M. Jopson and R. E. Tench, “Polarization independent Phase conjunction of lightwave signals” Electron. Lett., 29, 2216, 1993
    [11] R. Ludwig and G. Raybon, “BER measurements of frequency converted signals using four-wave mixing in a semiconductor laser amplifier at 1, 2.5, 5 and 10 Gbit/s”, Electron. Lett., 30, 338, 1994
    [12] R. Schnabel, U. Hilbk, Th. Hermes and H. G. Weber, “Polarization insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier “, IEEE Photon. Technol. Lett., 6, 56, 1994
    [13] C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices”, Appl. Phys., B35, 113, 1984
    [14] 胡明理, “鈮酸鋰攙雜氧化鎂支單晶生長積體化之研究”, 中央大學碩士論文, 80年6月
    [15] F. S. Chu and P. L. Liu, ”Low-loss coherent-coupling Y-branches”, Opt.Lett., 16, 309, 1991
    [16] C. T. Lee, ”Crosstalk characteristics of lens-like Ti-LiNbO3 intersecting channel waveguides”, Electron.Lett., 19, 805, 1983
    [17] S. Fouchet, A. Carenco, C. Daguest, R. Guglielmi and L. Riviere, ”Wavelength dispersion of Ti indused refractive index change in LiNbO3 as a function of diffusion parameters”, IEEE J. Lightwave Technol., LT-5, 700, 1987
    [18] D. S. Smithand and H. D. Riccius, ”Refractive indices of Lithium Niobate”, Opt. Commun., 17, 332, 1976
    [19] Dietrich Marcuse, “Directional couplers mode of nonidentical asymmetric slabs. part Ⅰ:synchronous couplers”, J.Lightvave Technol., LT-5, 113, 1987
    [20] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi and L. Riviere “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of dissusion parameters”, J.Lightvave techno., LT-5, 700, 1987
    [21] D. S. Smith and H. D. Riccius, “Refractive indices oflithium niobate”, Opt. Commun., 17, 332, 1976
    [22] L. Rayleigh, ”On waves propagation along the plane surface of an elastic solid”, Proc. London Math. Soc., 17, 4, 1885
    [23] D. P. Moran, “ Surface-wave devices for signal processing”, Elsevier, pp.29-35, 1985
    [24] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett., 7, 314, 1965
    [25] Amnon Yariv and Pochi Yeh, “Optical waves in crystals”, Mei Ya, pp.318-391,1984
    [26] Chen S. Tsai and Anna M. Matteo, “Integrated acousto-optic tunable filters in LiNbO3 for blue-green spectral region”, IEEE Ultrasonics Symposium, 739, 1997
    [27] G. D.Boyd and F. Heismann, “Tunable acoustooptic reflection filters in LiNbO3 without a Doppler shift, J.Lightvave Ttechnol., 7, 625, 1989
    [28] 汪曉元, “以雙重擴散式設計圓形單模導光管之研究”, 中央大學碩士論文, 83年6月
    [29] 李豪強, “兩級光電調制器在非線性失真消除、與光學雙穩態應用之研究”, 中央大學博士論文, 85年6月
    [30] C. L. Lee, Ph. D. Thesis (University of Carnegie-mellon), pp.66-73, 1982
    [31] 王誌麟, 呂明峰和鄧俊修, “光纖通訊”, 高立, pp.267-287, 1998
    [32] Govind P. Agrawal, “Fiber-optic communication systems”, John Wiley, pp.239-242, 1997
    [33] H. Nishihara, M. Haruna and T. Suhara, “ Optical integrated circuits”, McGraw-Hill, pp.289-293, 1985

    QR CODE
    :::