| 研究生: |
魏燕伶 Yen-Lin Wei |
|---|---|
| 論文名稱: |
具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器 Low Dark-Current and High-Thermal Stability Planar Si-Based MSM Photodetector with Thin Amorphous Silicon-Alloy Grade Superlattice-Like Multilayers |
| 指導教授: |
洪志旺
Jyh-Wong Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 矽鍺 、非晶質 、光檢測器 |
| 外文關鍵詞: | SiGe, amorphous, MSM |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文提要
本論文主要探討非晶矽/非晶矽化鍺調變週期類超晶格薄膜複層在金屬-半導體-金屬光檢測器裡的應用。我們證實了利用非晶矽/非晶矽化鍺調變週期類超晶格薄膜的等效能隙梯度變化不僅能降低元件膝電壓,更因為能帶的不連續而能有效的改善以往的組成梯度能隙位障層所造成的許多缺點,進而有效的降低元件暗電流。此結構的元件在5 V偏壓、波長0.83 μm及10 μW雷射光入射時所得之光響應度、膝電壓與暗電流分別為0.1(A/W)、1.8 V與0.31 nA。再者,在一周期性波長0.83 μm、60 ps脈衝寬度的入射光及10 V偏壓下所得到的元件暫態響應平均半高寬(FWHM)和下降時間(fall-time)分別為116.1 ps 以及388.6 ps。與組成梯度能隙位障層與其它許多以高能隙非晶質薄膜層當作蕭特基能障輔助增高層所製成的元件比較,此結構擁有相當低的暗電流與膝電壓。為了研究元件在熱穩定度上的表現,我們也嘗試在不同的操作溫度下進行元件特性量測,而實驗結果顯示此元件擁有相當高的熱穩定度,在50 ℃時暗電流仍然低於2 nA以下。
我們也探討了非晶質調變週期類超晶格薄膜複層的厚度與組數對元件特性的影響。藉由選擇適合的複層厚度以及組數可以得到優化的元件特性。
Abstract
The alternated i-a-Si:H/i-a-SiGe:H grade superlattice-like layer (GSL) was firstly introduced in planar Si-based metal-semiconductor-metal photodetectors (MSM-PD’s) to smooth the abrupt band discontinuity between the c-Si and i-a-Si:H heterojunction. It was demonstrated that the i-a-Si:H/i-a-SiGe:H GSL structure could drastically improve the disorder-caused disadvantages of i-a-SiGe:H composition-graded layer (CGL), and effectively suppress the device dark-current, improve its temporal response without raising its knee-voltage like thick and high optical bandgap barrier layer in the application to MSM-PD’s. The responsivity, knee-voltage and dark-current for the device with i-a-Si:H/i-a-SiGe:H GSL were 0.1(A/W), 1.8 V and 0.31 nA, respectively, under a 5 V bias voltage and 0.83 μm 10 μW incident laser power. Also, the average full-width-at-half-maximum (FWHM) and transient fall-time of the device were 116.1 ps and 388.6 ps, respectively, under 10 V bias voltage and 60 ps 0.83 μm light pules. Very low dark-current, low knee-voltage device was obtained as compared with devices having i-a-SiGe:H CGL or other previously reported amorphous Schottky barrier enhancing layers. Device thermal-stability was also investigated, and the stability of the device with GSL was outstanding even at a high temperature of 50 ℃.
The influence of layer thickness and pair number of GSL on characteristics of a MSM-PD had been studied also. By choosing an appropriate thickness and pair number of GSL, the optimum performance of a MSM-PD could be obtained.
Reference
[1] L. H. Laih, T. C. Chang, Y. A. Chen, W. C. Tsay, and J. W. Hong, “Characteristics of MSM Photodetectors with Trench Electrodes on P-type Si Wafer,” IEEE Trans. on Electron Devices, vol. 45, pp. 2018-2023, 1998.
[2] B. W. Mullins, Soares, S. F. Mcadrle, C. M. Wilson, and S. R. J. Brueck, “A Simple High-Speed Si Schottky Photodiode,” IEEE Photo. Technol. Lett., vol. 3, pp. 360-362, 1991.
[3] B. C. Tousley, N. Davids, A. H. Sayles, A. Paolella, P. Cooke,M. L. Lemoune, R. P. Moerkirk, and B. Nabet,”Broad-Bandwidth, High Responsivity Intermediate Growth Temperature GaAs MSM Photodetectors” IEEE Photo. Technol. Lett., vol 7, pp.1483~1485, 1995.
[4] B. Sciana, D. Radziewicz, I. Zborowska-Sindert, B. Czarnecki, P. Sitarek, J. Misiewicz, M. Tlaczala, ”Technology and Characterisation of Resonant Cavity Enhanced MSM GaAs Photodetectors ” Electron Tech., vol.33, No.3, 2000.
[5] L. H. Laih, J. C. Wang, Y. A. Chen, T. S. Jen, W. C. Tsay, J. W. Hong, “Characteristics of Si-based MSM Photodetectors with an Amorphous-Crystalline Heterojunction,” Solid-State Electronics, vol. 41, pp. 1693-1697, 1997.
[6] C. S. Lin, R. H. Yeh, C. H. Liao, and J. W. Hong, “High-speed Si-based Metal-Semiconductor-Metal Photodetectors with an Additional Composition-Graded i-a-Si1-xGex:H Layer,” Solid-State Electronics, vol. 46, pp. 2027-2033, 2002.
[7] Y. C. Chang, “Dark-current Characteristics of the Si-based MSM-PD with Amorphous Heterojunction and Trench Electrodes”, Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 2002.
[8] O. Wada, H. Nobuhara, H. Hamaguchi, T. Mikawa, A. Tackeuchi, and T. Fujii, “Very High Speed GaInAs Metal-Semiconductor-Metal Photodiode Incorporating an AlInAs/GaInAs Graded Superlattice” Appl. Phys. Lett. Vol. 54, No. 1, 1989.
[9] M. D. Tsai, S. W. Tan, Y. W. Wu, Y. J. Yang, and W. S. Lour, “Improvements in Direct-Current Characteristics of AlGaAs-GaAs Digital-Graded Superlattice-Emitter HBTs With Reduced Turn-On Voltage by Wet Oxidation”, IEEE Trans. On Electrons Devices, Vol. 50, No. 2, 2003.
[10] J. H. Lee, S. S. Li, M. Z. Tidrow, W. K. Liu, “Investigation of Multi-color, Broadband Quantum Well Infrared Photodetectors with Digital Graded Superlattice Barrier and Linear-Graded Barrier for Long Wavelength Infrared Applications”, Elsevier, Infrared Physics & Technology, Vol. 42, pp. 123~134, 2001.
[11] D. H. Lee, Sheng S. Li, “High Quality In0.53Ga0.47As Schottky Diode Formed By Graded superlattice of In0.53Ga0.47As/ In0.52Ga0.48As ”, Appl. Phys. Lett. Vol. 54, No. 19, 1989.
[12]H. Matsuura, and H. Okushi, “Schottky Barrier Junctions of Hydrogenated Amorphous Silicon-Germanium Alloys,” J. Appl. Phys.vol. 62, pp. 2871-2879, 1987.
[13] H. Mimura, and Y. Hatanaka, “ Carrier Transport Mechanisms of P-type Amorphous-n-type Crystalline Silicon Heterojunctions,” J. Appl. Phys.vol. 71, pp. 2315-2320, 1992.
[14] L. F. Marsal, J. Pallares, and X. Correig, “ Electrical Characterization of N-amorphous/P-crystalline Silicon Heterojunctions,” J. Appl. Phys.vol. 79, pp. 8493-8497, 1996.
[15] Donald A. Neamen, ”Semiconductor Physics and Devices” Second Edition, The McGraw-Hill Companies, Inc., Chap. 7, pp.284~286, 2001.
[16]A. Selvarajan, K. Shenao, Vijai K. Traipathi, “Optoelectronics: Technologies and Applications”, Chap. 10, pp. 211~218.
[17] D. H. Austun, “Ultrafast Laser Pulse and Applications”, edited by W. Kalser, Berlin, pp.183, 1988.
[18] Y. A. Chen, “Design and Fabrication of i-a-Si:H and i-a-SiGe:H MSM PDs”, Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1994.
[19] L. H. Laih, J. C. Wang, Y. A. Chen, T. S. Jen, W. C. Tsay, J. W. Hong, “Characteristics of Si-based MSM Photodetectors with an Amorphous-Crystalline Heterojunction,” Solid-State Electronics, vol. 41, pp. 1693-1697, 1997.
[20] C. S. Lin, R. H. Yeh, C. H. Liao, and J. W. Hong, “High-speed Si-based Metal-Semiconductor-Metal Photodetectors with an Additional Composition-Graded i-a-Si1-xGex:H Layer,” Solid-State Electronics, vol. 46, pp. 2027-2033, 2002.
[21] Dersch. H., L. Schweitzer, and J. Stuke, “Recombination Processes In a-Si:H Spin-dependent Photoconductivity”, Physical Review, Vol. B28, p.4678, 1983.
[22] Matsuda A., M. Koyama, N. Ikuchi, Y. Imanishi, and K. Tanaka, “Guiding Principle in the Preparation of High-Photosensitive Hydrogenated Amorphous Si-Ge Alloys from Glow Discharge Plasma”, Jpn. J, Appl. Phys., Vol.25, p.154, 1986.
[23] Aljishi. S., Z E. Smith, and S. Wagner, “Optoelectronic Properties and the Gap State Distribution in a-Si.Ge Alloys”, Amorphous Silicon and Related Materials, H, Fritzsche, ed., World Scientific. Singapore, pp. 887~938, 1989.
[24] Smith, Z E., A. Matsuda, H. Matsuura, H. Oheda, M. Tanaka, and S. Yokoyama, “Structure Defect and Transport Properties of Highly Photoconductive a-SiGe:H and a-SiC:H Alloys”, Journal of Non-Crystalline Solids, vol. 114, pp. 480~482, 1989.
[25] Karg. F., W. Kruhler, M. Moller. and K. V. Klitzing, “Electron and Holes Transport in a-SiGe:H Alloys”, J. Appl. Phys. Vol.60, pp.2016~2033, 1986.
[26] Nebel, C. E., H. C. Weller, and G. H. Bauer, “Extended State Mobility and Tail State Distribution of a-SiGe:H Alloys”, Mat. Res. Soc. Symp. Oorc., Vol 118, Pittsburgh, pp.507~512, 1988.
[27] Aljishi, S., J. D. Cohen, S. Jin, and L. Ley, “Band Tails in Hydrogenated Amorphous Silicon and Silicon-Germanium Alloys”, Phys. Rev. Lett., Vol. 64, pp. 2811~2814, 1990.