| 研究生: |
林淇平 Chi-ping Lin |
|---|---|
| 論文名稱: |
利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為 Numerical assessment of CO2 migration in anisotropic and heterogeneous saline aquifers |
| 指導教授: |
倪春發
Chuen-fa Ni |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 自然對流 、溶解相二氧化碳 、降尺度 、指狀流 、滲透係數變異性 |
| 外文關鍵詞: | natural convection, dissolved CO2, downscaling approach, fingering, permeability variation |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
溶解封存(Solubility trapping)為二氧化碳地質封存重要機制之一,瞭解其封存機制將有效提升於後續礦化封存、溶解量推估以及風險與安全評估方面之研究。本研究探討以溶解相二氧化碳於小尺度異質性鹽水層中,由重力及密度差異所造成之自然對流(natural convection)效應,研究工作中專注於液相二氧化碳於鹽水層中垂直向遷移行為討論,其中賦予岩層滲透性具不同程度之異質性變化.數值建構中利用單向降尺度法(one-way downscaling approach)於以解析由大尺度模擬區域縮減至小尺度模擬範圍,提高小尺度範圍模擬結果之效率與精確性,並以sequential Gaussian法建立滲透係數(permeability)隨機場,利用均值滲透係數(lnk)作為模擬區域之背景值,以滲透係數小擾動量( )與相關長度比率( )表示隨機場之變異程度。不同於以往研究以線性方程式或擾流行為參數控制模擬邊界驅動液相二氧化碳溶解,本研究以符合自然界條件之岩體異質性作為自然驅動性,搭配數值模式TOUGHREACT/ECO2N模擬不同條件案例下液相二氧化碳之遷移行為。由研究結果顯示,於固定之超臨界態二氧化碳飽和度進行溶解時,不同案例下液相二氧化碳仍具有同樣之擴散過渡帶,此過渡帶與岩層異質性無相關,為二氧化碳分子垂直擴散之區間,而過渡帶之下局部滲透係數變異性可以觸發指狀流和增強已溶解之二氧化碳的垂直對流,而指狀流之數量與型態變化取決於過渡帶底部邊緣滲透率之變異性,其後續之對流增量亦受控於隨機場滲透係數之變化.當異質性程度越高時,則二氧化碳之溶解率與溶解量將隨之增加,然在相同之變異係數上,當側向(x-direction)滲透係數相關長度高於垂直向(z- direction)時,二氧化碳之溶解率與溶解量明顯降低,因垂直向之滲透係數較低時,可抵制了重力驅動效應,液相二氧化碳於側向遷移明顯增加;二氧化碳之溶解率與溶解量於溶解初期時明顯有較大變化量,隨時間增加則趨向平緩,推測原因為流場內部流體密度趨近一致,減少密度流之效應發生.研究案例同時改變均值滲透係數大小,由結果顯示,均值滲透係數控制整體溶解行為.本研究所提出之降尺度法可有效解決大尺度數值模式之網格需求與解析效率,提升相關數值問題之精確度;而本研究之模擬結果可提供於二氧化碳溶解量與長期移棲行為之探討,針對封存量推估與安全風險評估機制使用。
This study simulated the natural convection of dissolved carbon dioxide (CO2) in a small-scale heterogeneous saline formation by using the ECO2N equation of state module in the TOUGHREACT model. A one-way downscaling approach that involves using a series of submodels in simulation procedures was proposed to efficiently simulate problems with high-scale discrepancies. The study evaluated the effects of different degrees of small-scale permeability variations on the vertical migration of dissolved CO2. The sequential Gaussian simulation model was used to generate unconditional random permeability fields for different natural logarithm of permeability (lnk) variations (i.e., lnk variances and correlations in x and z directions). The results showed an identical transition zone of dissolved CO2 near the top boundary, where a constant CO2 gas saturation was specified. The local permeability variations can trigger fingerings and enhance the vertical convection of the dissolved CO2. The number of fingerings depends on the variations of permeability near the front interface of the dissolved CO2 (i.e., the bottom edge of the transition zone for the dissolved CO2). However, the patterns and developments of fingerings are constrained by the permeability variations along the fingering paths. At the same mean lnk permeability, the convection fluxes increase with an increase in lnk variances. However, an increase in lateral correlations (i.e., increase in the correlation lengths in the x direction) can slightly reduce the convection fluxes at the same lnk variance. The highly variable flux rates of the dissolved CO2 occur early and the variations in the flux rate decrease with time.
[1] Bachu S, JJ Adams. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management. 44 (2003) 3151-75.
[2] Metz B, O Davidson, H De Coninck, M Loos, L Meyer. IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press: Cambridge, United Kingdom and New York, USA. 4 (2005).
[3] Michael K, A Golab, V Shulakova, J Ennis-King, G Allinson, S Sharma, et al. Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control. 4 (2010) 659-67.
[4]Trémosa J, C Castillo, CQ Vong, C Kervévan, A Lassin, P Audigane. Long-term assessment of geochemical reactivity of CO2 storage in highly saline aquifers: Application to Ketzin, In Salah and Snøhvit storage sites. International Journal of Greenhouse Gas Control. 20 (2014) 2-26.
[5] Rosenbauer RJ, B Thomas. 3 - Carbon dioxide (CO2) sequestration in deep saline aquifers and formations. in: MM Maroto-Valer, (Ed.). Developments and Innovation in Carbon Dioxide (Co2) Capture and Storage Technology. Woodhead Publishing2010. pp. 57-103.
[6] Kolenković I, B Saftić, D Perešin. Regional capacity estimates for CO2 geological storage in deep saline aquifers – Upper Miocene sandstones in the SW part of the Pannonian basin. International Journal of Greenhouse Gas Control. 16 (2013) 180-6.
[7] Ran C, G Zohar. CO2 Storage Capacity Assessment in the Deep Saline Aquifers of Southern Israel. Energy Procedia. 37 (2013) 5118-23.
[8] Hatzignatiou DG, F Riis, R Berenblyum, V Hladik, R Lojka, J Francu. Screening and evaluation of a saline aquifer for CO2 storage: Central Bohemian Basin, Czech Republic. International Journal of Greenhouse Gas Control. 5 (2011) 1429-42.
[9] Chasset C, J Jarsjö, M Erlström, V Cvetkovic, G Destouni. Scenario simulations of CO2 injection feasibility, plume migration and storage in a saline aquifer, Scania, Sweden. International Journal of Greenhouse Gas Control. 5 (2011) 1303-18.
[10] Lindeberg E, D Wessel-Berg. Vertical convection in an aquifer column under a gas cap of CO2. Energy Conversion and Management. 38, Supplement (1997) S229-S34.
[11] Hassanzadeh H, M Pooladi-Darvish, D Keith. Modelling of convective mixing in CO2 storage. Journal of Canadian Petroleum Technology. 44 (2005) 43-51.
[12] Xu X, S Chen, D Zhang. Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Advances in Water Resources. 29 (2006) 397-407.
[13] Pruess K. Numerical modeling studies of the dissolution-diffusion-convection process during CO2 storage in saline aquifers. Lawrence Berkeley National Laboratory. (2008).
[14] Pau GSH, JB Bell, K Pruess, AS Almgren, MJ Lijewski, K Zhang. High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources. 33 (2010) 443-55.
[15] Farajzadeh R, P Ranganathan, PLJ Zitha, J Bruining. The effect of heterogeneity on the character of density-driven natural convection of CO2 overlying a brine layer. Advances in Water Resources. 34 (2011) 327-39.
[16] Ranganathan P, R Farajzadeh, H Bruining, PJ Zitha. Numerical Simulation of Natural Convection in Heterogeneous Porous media for CO2 Geological Storage. Transp Porous Med. 95 (2012) 25-54, doi: 10.1007/s11242-012-0031-z.
[17] Simmons CT, KA Narayan. Mixed convection processes below a saline disposal basin. Journal of Hydrology. 194 (1997) 263-85.
[18] Farajzadeh R, A Barati, HA Delil, J Bruining, PLJ Zitha. Mass Transfer of CO2 Into Water and Surfactant Solutions. Petroleum Science and Technology. 25 (2007) 1493-511.
[19] Hassanzadeh H, M Pooladi-Darvish, DW Keith. Scaling behavior of convective mixing, with application to geological storage of CO2. AIChE Journal. 53 (2007) 1121-31.
[20] Lu C, PC Lichtner. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers. Journal of Physics: Conference Series. IOP Publishing2007. pp. 012042.
[21] Kandaswamy P, M Eswaramurthi. Density maximum effect on buoyancy-driven convection of water in a porous cavity with variable side wall temperatures. International Journal of Heat and Mass Transfer. 51 (2008) 1955-61.
[22] Musuuza JL, FA Radu, S Attinger. The effect of dispersion on the stability of density-driven flows in saturated homogeneous porous media. Advances in Water Resources. 34 (2011) 417-32.
[23] Royer JJ, L Flores. Two-dimensional natural convection in an anisotropic and heterogeneous porous medium with internal heat generation. International Journal of Heat and Mass Transfer. 37 (1994) 1387-99.
[24] Flett M, R Gurton, G Weir. Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping. Journal of Petroleum Science and Engineering. 57 (2007) 106-18.
[25] Lindeberg E, D Wessel-Berg. Upscaling studies of diffusion induced convection in homogeneous and heterogeneous aquifers. Energy Procedia. 4 (2011) 3927-34.
[26] Riaz A, M Hesse, HA Tchelepi, FM Orr. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics. 548 (2006) 87-111.
[27] Green C, J Ennis-King. Effect of Vertical Heterogeneity on Long-Term Migration of CO2 in Saline Formations. Transp Porous Med. 82 (2010) 31-47.
[28] Zhang W, Y Li, AN Omambia. Reactive transport modeling of effects of convective mixing on long-term CO2 geological storage in deep saline formations. International Journal of Greenhouse Gas Control. 5 (2011) 241-56.
[29] Zhang W, Y Li, T Xu, H Cheng, Y Zheng, P Xiong. Long-term variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China. International Journal of Greenhouse Gas Control. 3 (2009) 161-80.
[30] Pruess K. ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Lawrence Berkeley National Laboratory Berkeley, 2005.
[31] Spycher N, K Pruess. CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100°C and up to 600 bar. Geochimica et Cosmochimica Acta. 69 (2005) 3309-20.
[32] Ni C-F, S-G Li, C-J Liu, SM Hsu. Efficient conceptual framework to quantify flow uncertainty in large-scale, highly nonstationary groundwater systems. Journal of Hydrology. 381 (2010) 297-307.
[33] Mehl S, MC Hill. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: a new method of interpolation and analysis of errors. Advances in Water Resources. 27 (2004) 899-912.
[34] Mehl S, MC Hill. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Advances in Water Resources. 25 (2002) 497-511.
[35] Afshari S, R Mandle, S-G Li. Hierarchical patch dynamics modeling of near-well dynamics in complex regional groundwater systems. Journal of Hydrologic Engineering. 13 (2008) 894-904.
[36] Xu T. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1. 2.1. Lawrence Berkeley National Laboratory. (2008).
[37] Kongsjorden H, O Kårstad, TA Torp. Saline aquifer storage of carbon dioxide in the Sleipner project. Waste Management. 17 (1997) 303-8.
[38] Deutsch CV, AG Journel. GSLib. Geostatistical software library and user’s guide. (1998) 369.
[39] Korbøl R, A Kaddour. Sleipner vest CO2 disposal - injection of removed CO2 into the utsira formation. Energy Conversion and Management. 36 (1995) 509-12.
[40] Fornel A, A Estublier. To A Dynamic Update Of The Sleipner CO2 Storage Geological Model Using 4d Seismic Data. Energy Procedia. 37 (2013) 4902-9.
[41] Chadwick RA. 10 - Offshore CO2 storage: Sleipner natural gas field beneath the North Sea. in: J Gluyas, S Mathias, (Eds.). Geological Storage of Carbon Dioxide (co2). Woodhead Publishing2013. pp. 227-53e.
[42] Deflandre JP, A Estublier, A Baroni, A Fornel, V Clochard, N Delépine. Assessing Field Pressure and Plume Migration in CO2 Storages: Application of Case-specific Workflows at in Salah and Sleipner. Energy Procedia. 37 (2013) 3554-64.
[43] Torp TA, J Gale. Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects. Energy. 29 (2004) 1361-9.
[44] Cavanagh AJ, RS Haszeldine. The Sleipner storage site: Capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. International Journal of Greenhouse Gas Control. 21 (2014) 101-12.
[45] Cavanagh A. Benchmark Calibration and Prediction of the Sleipner CO2 Plume from 2006 to 2012. Energy Procedia. 37 (2013) 3529-45.