| 研究生: |
馮稟傑 Bing-Jie Feng |
|---|---|
| 論文名稱: |
雷射誘導背向活化結合無電鍍應用於玻璃基板之選擇性金屬化 Combining Laser-induced Backside Activation and Electroless Deposition for Selective Metallization on Glass Substrate |
| 指導教授: |
何正榮
Jeng-Rong Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 銅基金屬有機分解墨水 、雷射活化 、無電鍍銅沉積 |
| 外文關鍵詞: | copper-based MOD ink, laser activation, electroless copper deposition |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於在工業領域中對於玻璃基板上之導電金屬圖案的需求不斷增長,並且金屬材料與玻璃基板表面之間的附著性容易受到限制,因此本研究旨在透過結合雷射誘導背面活化與後續無電鍍沉積的方法來發展一選擇性金屬化技術,從而在玻璃基板上製作具有微米尺度的可靠導電路徑。
銅金屬材料因其出色的導電性和成本效益而被選作為雷射活化和無電鍍沉積的金屬來源。自合成的銅基金屬有機分解(MOD)墨水可熱還原為銅原子作為金屬種子源,並在雷射掃描策略下沿定義的路徑進一步誘發活化區域。在玻璃基板上製造的活化路徑顯現出低於表面粗糙度100 nm 粗糙表面,且具有分散的銅種子緊附在其上,因此無需對基板表面進行一般無電鍍方法中所使用的敏化及活化步驟,沿著雷射活化路徑製造出
的特殊表面性質即可通過浸入無電鍍銅浴中進行選擇性的銅沉積。
在各種不同的雷射通量(0.12, 0.18, 0.26, 0.34, 0.42 及0.51 J/cm2)和掃描速度(5, 7.5 及10 mm/s)在內的加工參數組合,具有較高雷射通量或較低掃描速度所製造的活化路徑在經相同的無電鍍銅沉積步驟後,對於導電路徑的形成有較佳的影響,此外,銅導電路徑的形態和電性有顯著差異。實驗結果表明,所製造的銅導電路徑其最低電阻率約為 3.5倍的塊材銅,路徑寬度約略等於聚焦雷射光斑尺寸為34μm,表面粗糙度為42 nm,並且可以承受超聲波振動測試和剝離測試。
Due to the increasing demand for conductive metal patterns on glass substrate in the industrial field and the adhesion between the metal materials and the surface of glass substrate is prone to be limited, therefore, this study aims to develop a selective metallization technique by combining laser-induced backside activation and subsequent electroless deposition to make a reliable conductive path with micrometer scale on glass substrate.
Copper material is chosen as the metal source for laser activation and electroless deposition due to its excellent electrical conductivity and cost-effectiveness. The self-synthesized copper-based metal organic decomposition (MOD) ink can be thermally reduced to copper atoms as the metal seed source, and further induces the activated-area along the defined path under the laser scanning strategy. The activated-path fabricated on glass substrate exhibits rough surface with surface roughness lower than 100 nm and scattered copper seed tightly sticking on it. Therefore, the substrate surface does not need to be subjected to the sensitization and activation steps used in the general electroless plating method, and the unique surface properties produced along the laser-induced activated-path can be immersed into electroless copper bath for selective copper deposition.
Under various sets of laser fluence (0.12, 0.18, 0.26, 0.34, 0.42, and 0.51 J/cm2) and scanning speed (5, 7.5, and 10 mm/s), activated-path with higher laser fluence or lower scanning speed can have a better effect on formation of copper conductive path after the same electroless copper deposition process. Furthermore, the morphologies and electrical properties of copper conductive path are significant difference. The experimental results show that the lowest resistivity of the fabricated copper conductive path is roughly 3.5 times than that of bulk copper, the path width equals to that of the focused laser spot size is approximately 34 μm, the surface roughness is 42 nm, and it can withstand ultrasonic vibration test and peel-off test.
1. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges. 2012 10th International Conference on Frontiers of Information Technology.
2. Chen, Z., & Zhang, Y. P. (2013). FR4 PCB grid array antenna for millimeter-wave 5G mobile communications. 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO).
3. http://www.cheer-time.com.tw/index.php view=custom1&d=30
4. https://www.microwavejournal.com/articles/35052-glass-substrate-a-market multipliedby-three-by-2025
5. https://www.sciencedirect.com/topics/engineering/millimeter-wave
6. https://www.androidauthority.com/corning-glass-5g-antenna-842341/
7. https://www.agc.com/en/news/detail/1200822_2814.html
8. https://www.agc.com/en/news/detail/1199304_2814.html
9. Manshina, A., Povolotskiy, A., Ivanova, T., Kurochkin, A., Tver’yanovich, Y., Kim, D., Kwon, S. C. (2007). Laser-assisted metal deposition from CuSO4-based electrolyte solution. Laser Physics Letters, 4(2), 163-167.
10. Smikhovskaia, A. V., Andrianov, V. S., Khairullina, E. M., Lebedev, D. V., Ryazantsev,M. N., Panov, M. S., & Tumkin, I. I. (2019). In situ laser-induced synthesis of copper silver microcomposite for enzyme-free d-glucose and l-alanine sensing. Applied Surface Science, 488, 531 536.
11. S. Panov, M., M. Khairullina, E., S. Vshivtcev, F., N. Ryazantsev, M., & I. Tumkin, I. (2020). Laser Induced Synthesis of Composite Materials Based on Iridium, Gold and Platinum for Non-Enzymatic Glucose Sensing. Materials, 13(15), 3359.
12. Smikhovskaia, A. V., Kochemirovskaya, S. V., Novomlinskii, M. O., Fogel’, A. A., Lebedev, D. V., Kochemirovsky, V. A., Menchikov, L. G. (2019). Laser induced continuous generation of Ni nanoparticles for organic synthesis. Russian Chemical Bulletin, 68(11), 2020–2027.
13. Kordás, K., Békési, J., Vajtai, R., Nánai, L., Leppävuori, S., Uusimäki, A., Moilanen, P. (2001). Laser assisted metal deposition from liquid-phase precursors on polymers. Applied Surface Science, 172(1-2), 178–189.
14. Kordás, K., Békési, J., Bali, K., Vajtai, R., Nánai, L., George, T. F., & Leppävuori, S. (1999). Ultraviolet laser-induced liquid-phase palladium seeding on polymers. Journal of Materials Research, 14(09), 3690–3694.
15. Blank, D. H. A., Dekkers, M., & Rijnders, G. (2013). Pulsed laser deposition in Twente: from research tool towards industrial deposition. Journal of Physics D: Applied Physics, 47(3), 034006.
16. Ouchi, A., Bastl, Z., Boháček, J., Orita, H., Miyazaki, K., Miyashita, S., Pola, J. (2004). Room Temperature Reaction between Laser Chemical Vapor Deposited Selenium and Some Metals. Chemistry of Materials, 16(18), 3439–3445.
17. Kochemirovsky, V. A., Menchikov, L. G., Safonov, S. V., Bal’makov, M. D., Tumkin, I. I., & Tver’yanovich, Y. S. (2011). Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces. Russian Chemical Reviews, 80(9), 869–882.
18. Kochemirovsky, V. A., Skripkin, M. Y., Tveryanovich, Y. S., Mereshchenko, A. S., Gorbunov, A. O., Panov, M. S., Safonov, S. V. (2015). Laser-induced copper deposition from aqueous and aqueous–organic solutions: state of the art and prospects of research. Russian Chemical Reviews, 84(10), 1059–1075.
19. Tsvetkov, M. Y., Yusupov, V. I., Timashev, P. S., Golant, K. M., Minaev, N. V., & Bagratashvili, V. N. (2017). Improving the efficiency of laser-induced backside wet etching of optically transparent materials as a result of generation of carbon and silver nanoparticles. Nanotechnologies in Russia, 12(1-2), 86-97.
20. Yang, Y. A., Wei, Y. B., Loo, B. H., & Yao, J. N.(1999). Electroless copper plating on a glass substrate coated with ZnO film under UV illumination. Journal of Electroanalytical Chemistry, 462(2), 259–263.
21. http://chur.chu.edu.tw/bitstream/987654321/4848/8/NC091CHPI0598004_7.pdf
22. Khoperia, T. N. (2003). Electroless deposition in nanotechnology and ULSI. Microelectronic Engineering, 69(2-4), 384–390.
23. Coombs Jr, C. F. (2008). Printed circuits handbook, McGraw-Hill Education.
24. Lin, Y.-M., & Yen, S.-C. (2001). Effects of additives and chelating agents on electroless copper plating. Applied Surface Science, 178(1-4), 116-126.
25. Hanna, F., Hamid, Z. A., & Aal, A. A. (2004). Controlling factors affecting the stability and rate of electroless copper plating. Materials Letters, 58(1-2), 104-109.
26. Honma, H. (1994). Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent. Journal of The Electrochemical Society, 141(3), 730.
27. Shu, J., Grandjean, B. P. A., & Kaliaguine, S. (1997). Effect of Cu(OH)2on Electroless Copper Plating. Industrial & Engineering Chemistry Research, 36(5), 1632 1636.
28. Li, J., Hayden, H., & Kohl, P. A. (2004). The influence of 2,2′-dipyridyl on non-formaldehyde electroless copper plating. Electrochimica Acta, 49(11), 1789-1795.
29. Ghosh, S. (2018). Electroless Copper Deposition: A critical Review. Thin Solid Films. 30. Hsu, P. C., Kong, D., Wang, S., Wang, H., Welch, A. J., Wu, H., & Cui, Y. (2014). Electrolessly deposited electrospun metal nanowire transparent electrodes. Journal of the American Chemical Society, 136(30), 10593-10596.
31. Schlesinger, M. and M. Paunovic (2011). Modern electroplating, John Wiley & Sons.
32. Hsu, H.-H., Yeh, J.-W., & Lin, S.-J. (2003). Repeated 3D Nucleation in Electroless Cu Deposition and the Grain Boundary Structure Involved. Journal of The Electrochemical Society, 150(11), C813.
33. Seo, J. M., Kwon, K.-K., Song, K. Y., Chu, C. N., & Ahn, S.-H. (2020). Deposition of Durable Micro Copper Patterns into Glass by Combining Laser-Induced Backside Wet Etching and Laser-Induced Chemical Liquid Phase Deposition Methods. Materials, 13(13), 2977.
34. Kim, H.-G., & Park, M. S. (2017). Circuit patterning using laser on transparent material. Surface and Coatings Technology, 315, 377–384.
35. Long, J., Li, J., Li, M., & Xie, X. (2019). Fabrication of robust metallic micropatterns on glass surfaces by selective metallization in laser-induced porous surface structures. Surface and Coatings Technology, 374, 338–344.
36. Sugioka, K., Hongo, T., Takai, H., & Midorikawa, K.(2005). Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Applied Physics Letters, 86(17), 171910.
37. Xu, J., Liao, Y., Zeng, H., Zhou, Z., Sun, H., Song, J., … Midorikawa, K. (2007). Selective metallization on insulator surfaces with femtosecond laser pulses. Optics Express, 15(20), 12743.
38. Xu, J., Liao, Y., Zeng, H., Cheng, Y., Xu, Z., Sugioka, K., & Midorikawa, K. (2008). Mechanism study of femtosecond laser induced selective metallization (FLISM) on glass surfaces. Optics Communications, 281(13), 3505 3509.
39. Hanada, Y., Sugioka, K., & Midorikawa, K. (2007). Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Applied Physics A, 90(4), 603–607.
40. Xu, J., et al. (2013). "Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing." Lab Chip 13(23): 4608-4616.
41. Steen, W. M. and J. Mazumder (2010). Laser material processing, springer science & business media.
42. https://www.keyence.com/ss/products/microscope/glossary/ at2/laser_scanning_confoca_microscopes/
43. https://tw.element14.com/keithley/2410/source-meter 1kv-1a-20w/dp/2772527
44. http://www.phi.com.tw/tp610.htm
45. Yonezawa, T., Tsukamoto, H., Yong, Y., Nguyen, M. T., & Matsubara, M. (2016). Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu2+-alkanolamine metallacycle compounds for electrically conductive layer formation. RSC Advances, 6(15), 12048 12052.
46. Yabuki, A., Arriffin, N., & Yanase, M. (2011). Low temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films, 519(19), 6530–6533.
47. Kim, J.-K., et al. (1999). "Direct Laser Metallization with Thin Copper Formate Films." JOURNAL KOREAN PHYSICAL SOCIETY 35(5): 426-430.
48. Schnell, G., Duenow, U., & Seitz, H. (2020). Effect of Laser Pulse Overlap and Scanning Line Overlap on Femtosecond Laser-Structured Ti6Al4V Surfaces. Materials, 13(4), 969.
49. Vela, E., Hafez, M., & Régnier, S. (2009). Laser Induced Thermocapillary Convection for Mesoscale Manipulation. International Journal of Optomechatronics, 3(4), 289–302.
50. Lin, C.-H., Jiang, L., Chai, Y.-H., Xiao, H., Chen, S.-J., & Tsai, H.-L. (2009). One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering. Optics Express, 17(24), 21581.