跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳映秀
Ying-Hsiu Chen
論文名稱: 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
Initial Solvent-screening of Racemic (R/S)(±)-Ibuprofen and Crystallization Kinetics of Ibuprofen Sodium Salt
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 95
語文別: 英文
論文頁數: 191
中文關鍵詞: 成核晶體成長結晶動力學溶劑篩選同質異相外消旋
外文關鍵詞: nucleation, polymorph, solvent screening, racemic, crystal growth, kinetics
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 外消旋物質包含外消旋聚集物、外消旋混合物或者擬消旋體(固體溶液)。市面上大部分(90-95%)的外消旋藥都是外消旋混合物。在這篇論文中,我們集中在包含伊普以及伊普鹽二水化合物的外消旋混合物藥的結晶,並且嘗試提供對增進藥物發展效率的一系列工程技術資料。這篇論文完成了兩個重要的研究。
    首先,我們是第一個使用23種溶液(水、甲醇、乙醇、異丙醇、正丁醇、苯甲醇、丙酮、乙睛、硝基苯、二甲基甲醯胺、二甲基亞楓、丁酮、乙酸乙酯、甲基第三丁基醚、正庚烷、N,N-二甲基苯胺、二甲苯、間二甲苯、甲苯、苯、1,4,-二氧陸圜、四氫呋喃以及氯仿)利用初始溶液篩選法來徹底以及同時收集依普的外消旋混合物包含溶解度、同質異相、結晶度以及結晶形貌的工程技術資料。在這個部份,我們是伊普外消旋混合物的溶劑同質異相表的發明者。溶劑同質異相表是材料的特性。研究的結果如下:(1)伊普外消旋混合物幾乎不溶於水,(2)粉末X光繞射以及微分熱插掃描分析儀的研究顯示伊普為同型物質,(3)伊普外消旋混合物從二甲基甲醯胺溶液中成長的結晶比起其他容易有最高的結晶度,最後(4)不同的溶液(從極性溶劑到非極性溶劑)可以修改伊普外消旋混合物的結晶體長寬比。對於伊普而言,在晶體中是以二聚物的鍵結方式形成羧酸,且羧酸族群相對地比較喜歡溶解於極性的溶劑中。因此伊普的晶體長寬比,在極性溶劑中會比非極性溶劑小。
    第二,我們集中在伊普外消旋混合物的結晶動力學。在這個部份,我們是第一個使用0.02公克的純對應結構體的 (S)-(-)-伊普鈉鹽二水化合物以及單對掌性的酸性 (S)-(+)-伊普作為添加物。另外,我們使用電導度計來執行原位監控整個結晶程序並且整合熱力學與動力學的資訊。利用電導度計我們可以獲得結晶過程的時間點從成核的誘發期到晶體成長終點,然後評估基礎地成核與結晶成長因子。這個研究的結果非常的重要,因為不同的添加劑被加入的出現會改變結晶的路徑來製造:(1)伊普鈉鹽二水外消旋混合物,(2)伊普鈉鹽二水外消旋聚集物,(3)伊普鈉鹽的擬外消旋體。


    Racemic species involve racemic conglomerate, racemic compound, or pseudoracemate (solid solution). On the market, most racemic drugs are racemic compound (90-95%). In this thesis, we focused on the crystallization of the racemic compound drug including ibuprofen ((R/S)(±)-2-[4-isobutylphenyl)propionic acid, C13H18O2) and sodium ibuprofen dihydrate ((R/S)(±)-sodium 2-(4-isobutylphenyl) propanoate, C13H17NaO2·2H2O), and attempted to provide a series of effective engineering technology data to improve the efficiency for drug development. Two important studies in this thesis were performed.
    Firstly, we were the first to use 23 solvents (water, methanol, ethanol, isopropyl alcohol (IPA), n-butyl alcohol, benzyl alcohol, acetone, acetonitrile, nitrobenzene, N,N-Dimethylformamide (DMF), dimethy sulfoxide (DMSO), methyl ethyl ketone (MEK), ethyl acetate, methyl-t- butyl ester (MTBE), n-heptane, N,N-dimethylaniline(DMA), xylene, p-xylene, toluene, benzene, 1,4 dioxane, tetrahydrofurn (THF), and chloroform.) by initial solvent-screening to collect engineering technology data including solubility, polymorphism, crystallinity, and crystal habit of racemic compound of ibuprofen, simultaneously. In this section, we are the inventors for the “form space” of the racemic compound of ibuprofen. “Form space” is the material’s characteristics. Results of this investigation were shown as the following: (1) the racemic compound of ibuprofen was practically insoluble in water, (2) the powder x-ray diffraction (PXRD) and differential scanning calorimetry (DSC) studies showed that ibuprofen was isomorphic, (3) the degree of crystallinity of racemic ibuprofen in DMF was higher than the ones given from other solvents, finally, (4) the different type of solvents (from polar to non-polar) can modify the aspect ratio of racemic compound of ibuprofen. Because the racemic compound of ibuprofen packing was formed by dimer formation in solution before the incorporation into the crystal. Hence, racemic compound of ibuprofen have a carboxylic acid group are likely to dissolve in polar solvents.
    Secondly, we focused on the crystallization kinetics of racemic compound of ibuprofen. In this section, we were the first to use 0.02g of the pure enantiomer of S(-)-sodium ibuprofen dihydrate and the homochiral parent acid (S)-(+)-ibuprofen as additives. In addition, we employed electrical conductance in situ monitor the entire crystallization process and to gather thermodynamics (solubility, Gibbs free energy) and kinetics (nucleation and crystal growth) information. The fundamental nucleation and crystal growth parameters were then estimated. This investigational results were very important. Because the presence of different additives could alter the crystallization pathways to produce (1) racemic compound of sodium ibuprofen dihydrate, (2) racemic conglomerate of sodium ibuprofen dehydrate, and (3) pseudoracemic of sodium ibuprofen.

    Table of Contents 摘 要.............................................................................................................................I Abstract…………………………………………………………………………...…...III Acknowledgments…………………………………………………………….....……VI Table of Contents……………………………………………………………......…...VII List of Figures………………………………………………………………...……....XI List of Tables……………………………………………………………………….XVII Chapter 1 Executive Summary…………………………………………………...…...1 1.1 Introduction……………………………………………………..........….…....1 1.2 Brief Introduction of Racemic Compound of Drug…………………......….5 1.3 Conceptual Framework…………………………………………....…........…9 Cited Literatures..…………………………………………........………….....…14 Chapter 2 Analytical Instruments…………………………………………...…...….19 2.1 Introduction…………………………………........……………….….......….19 2.2 Differential Scanning Calorimetry (DSC)…………………………....…....23 2.3 Thermogravimetric Analyzer (TGA)…………………………….…...…....27 2.4 Powder X-ray diffractometry (PXRD)…………………………………......30 2.5 Optical Microscope (OM)……………………………………………..….....34 2.6 Electrical Conductance……………………………………………..…….....38 V II 2.7 Conclusions…………………………………………………………...…...…41 Cited Literatures...………………………………………………..………..……42 Chapter 3 Solubility, Polymorphism, Crystallinity, and Crystal Habit of Racemic Compound of Ibuprofen by Initial Solvent-Screening ...........................48 3.1. Introduction....................................................................................................48 3.1.1. Solubility...............................................................................................49 3.1.2. Polymorphism.......................................................................................51 3.1.3. Crystallinity...........................................................................................51 3.1.4. Crystal habit..........................................................................................52 3.1.5. Racemic compound of ibuprofen..........................................................52 3.2 Materials .........................................................................................................55 3.2.1. Drug .....................................................................................................55 3.2.2. Organic solvent.....................................................................................59 3.3 Experimental Section......................................................................................63 3.3.1. Crystallization Procedures....................................................................63 3.3.2. Solubility measurement........................................................................64 3.3.3 Instrument analysis................................................................................65 Differential scanning calorimetry (DSC)..............................................65 Powder X-ray diffractometry (PXRD)............................ .....................65 VI II Optical Microscopy (OM).....................................................................66 3.4. Result and Discussion....................................................................................67 3.4.1. Solubility...............................................................................................67 3.4.2. Polymorphism.......................................................................................72 3.4.3. Crystallinity ..........................................................................................75 3.4.4. Crystal habit of Crystals........................................................................77 3.5. Conclusions.....................................................................................................81 Cited Literatures…………………………………………………………...…....82 Chapter 4 The Effect of the Homochiral Additives of S(+)-Ibuprofen and S(-)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetic Mechanism of (R/S)(±)-Sodium Ibuprofen Dihydrate….....…………......90 4.1. Introduction………………...………….......……………………………….90 4.2. Materials………………………...…………………………………...……..96 4.2.1. Racemic sodium ibuprofen digydrate…...………………………..…..96 4.2.2. Organic solvent……………………………………..………………...97 4.2.3. Preparation of enantiomeric S(-)-sodium ibuprofen dehydrate……....98 4.3. Instrument Analytical………………………………...…………………..100 4.3.1. Dfferential Scanning Calorimetry (DSC)…………..……………….100 4.3.2. Thermogravimetric Analysis (TGA)…………………………...……100 IX 4.3.3. Optical Microscopy (OM)…………………………....…...…………101 4.3.4. Electrical Conductance...…………………………….……..……….101 4.4. Experimental Apparatus and Procedure…………...…………....……...103 4.4.1. Concentration Calibration……………………………………...……103 4.4.2. Solubility Measurement…………………………………...…...…....103 4.4.3. Crystallization process………………………...…………...………..105 4.5. Results and Discussion……………………………...…………...………..108 4.5.1. Nucleation Mechanism………...………………….....……………...108 4.5.2. Crystal Growth Mechanism……………………….……...…..….….115 4.5.3. Physico-chemical characterization………………….....…….….…...125 4.5.4. Critical Micelle Concentration (CMC)……………….......…..….….126 4.6. Conclusions……………………………………...………....…….………..131 Notation………………………………………...………………………….133 Cited Literatures………………………………………………..………...134 Chapter 5 Conclusions…………………………………………….………...……....143 5.1. Initial Solvent-screening…………………………………………….........144 5.2. Crystallization Kinetic mechanism of (R/S)(±)-sodium ibuprofen Dihydrate............................................................................................................145 Summary Literatures.................................................................................................147

    Summary Literatures
    Chapter 1
    1. M. S. Lipsky, MD, and L. K. Sbarp, “From idea to market: the drug approval
    process,” JABFP 14(5): 362-367 (2001).
    2. S. Kraljevic, P. J. Stambrook, and K. Pavelic, “Accelerating drug discovery,”
    EMBO reports 5(9): 837-842 (2004).
    3. G. W. Caldwell, “Compound optimization in early- and late-phase drug discovery:
    acceptable pharmacokinetic properties utilizing combined physicochemical, in
    vitro and in vivo screens,” Current Opinion in Drug Discovery & Development 3
    (1): 30-41 (2000).
    4. J. Wechsler, “Manufacturers face new challenges battling global threats,” Pharm.
    Tech. 30(8): 24-32 (2005).
    5. L. Yu, S. M. Reutzel and G.. A. Stephenson, “Physical characterization of
    polymorphic drugs: an integrated characterization strategy,” PSTT. 1(3): 118-127
    (1998).
    6. Y. Yoshihashi, E. Yonemochi, amd K. Terada, “Estimation of initial dissolution
    rate of drug substance by thermal analysis: application for carbamazepine
    hydrate,” Pharm. Devel. Tech. 7(1): 89-95 (2002).
    7. D. J. W. Grant, “Theory and origin of polymorphism.”in,” Polymorphism in
    pharmaceutical solids.” Edited by H.G. Brittain, Marcel Dekker, New York, pp
    1-33 (1999).
    8. L. X. Yu, M. S. Furness, A. Raw, K. P. W. Outlaw, N. E. Nashed, E. Ramos, S. P.
    F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe, Jr., Y. Y. Chiu, and
    A. S. Hussain, “Scientific considerations of pharmaceutical solid polymorphism
    in abbreviated new drug applications,” Pharm. Res. 20(4):531-536 (2003).
    147
    9. T. L. Threlfall, “Analysis of organic polymorphs a review,” Analyst. 120(10):
    2435-2459 (1995).
    10. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M.J. Read, A. V.
    Lemmo, S. Ellis, M. J. Cima, C. R. Gardner. “High-throughput crystallization:
    polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug.
    Deliv. Rev. 56(3): 275-300 (2004).
    11. S. Teychene, J. M. Auertret, and B. Biscans, “Determination of solubility profiles
    of eflucimibe polymorphs: experimental and modeling,” J. Pharm. Sci.
    95(4):871-882 (2006).
    12. R. G. Cantera, M. G. Leza, and C. M. Bachiller, “Solid phases of tenoxicam,” J.
    Pharm. Sci. 91(10): 2240-2251 (2002).
    13. T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, and H.
    Murata, T. Mitani, “Improved lifetime of an OLED using aluminum (III) tris
    (8-hydroxyquinolate),” Science and Technology of Advanced Materials. 5(3):
    331–337(2004).
    14. A. Chimmalgi, D. J. Hwang, C. P. Grigoropoulos, “Nanoscale rapid melting and
    crystallization of semiconductor thin films,” NANO LETTERS. 5(10):1924-1930
    (2005).
    15. K.J. Kim, H.S. Kim., “Coating of energetic materials using crystallization,”
    Chem. Eng. Technol. 28(8): 946 – 951 (2005).
    16. T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role
    of solvent,” Org. Process Res. Dev. 4(5): 384-390 (2000).
    17. S. Gracin and A. C. Rasmuson, “Solubility of phenylacetic acid,
    p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid,
    and Ibuprofen in pure solvents,” J. Chem. Eng. Data. 47(6): 1379-1383 (2002).
    148
    18. M. Fujiwara, Z. K. Nagy, J. W. Chew, and Richard D. Braatz, “First-principles
    and direct design approaches for the control of pharmaceutical crystallization,” J.
    Process. Control. 15(5): 493-504 (2005).
    19. S. Zhang, “Emerging biological materials through molecular self-assembly,”
    Biotech. Adv. 20(5): 321-339 (2002).
    20. A. Somogyi, F. Bochner and D. Foster, “Inside the isomers: the table of chiral
    switches,” Australian. Prescriber. 27(2):47-49 (2004).
    21. Z. Jane and D. J. W. Grant, “Relationship between physical properties and crystal
    structures of chiral drugs,” J. Pharm. Sci. 86(10):1073-1078 (1997).
    22. M. C. Gohel, “Overview on chirality and applications of stereo-selective
    dissolution testing in the formulation and development work,” Dissolution.
    Technologies. 10(3): 16-20 (2003).
    23. G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant,
    “Racemic compound of species of sodium ibuprofen: characterization and
    polymorphic relationships,” J. Pharm. Sci. 92(7): 1356-1366 (2003).
    24. S. Datta, and D. J. W. Grant, “Crystal structures of drugs: advances in
    determination, prediction and engineering,” Nature 3(1):42-57 (2004).
    25. T. R. Kommuru, M. A. Khan, and I. K. Reddy, “Racemate and enantiomers of
    ketoprofen: phase diagram, thermodynamic studies, skin permeability, and use of
    chiral permeation enhancers,” J. Pharm. Sci. 87(7): 833-840 (1998).
    26. B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of S(-) sodium
    ibuprofen,” United States Patent, NO.5696165.
    27. H. Potthast, J.B. Dressman, H.E. Junginger, K.K. Midha, H. Oeser, V.P. Shah, H.
    Vogelpoel, and D.M. Barends, “Biowaiver monographs for immediate release
    solid oral dosage forms: ibuprofen,” J. Pharm. Sci. 94(10): 2121-2131 (2005).
    149
    28. S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V.
    Lemmo, S. Ellis, M. J. Cima, C. R. Gardner, “High-throughput crystallization:
    polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug.
    Deli. Rev. 56(3): 275-300 (2004).
    29. G. L. Perlovich, S. V. Kurkov, L. K. Hansen, and A. Baure-Brandl,
    “Thermodynamics of sublimation, crystal lattice energies, and crystal structures
    of racemates and enantiomers: (+)- and (+/-)-ibuprofen,” J. Pharm. Sci.
    93(3):654-666 (2004).
    30. Y. Zhang, and D. J. W. Grant, “Similarity in structures of racemic and
    enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr., Sect. C. C61(Pt 9):
    m435-m438 (2005).
    31. S. Byrn, K. Morris, and S. Comella, “Reducing time to market with a
    science-based product management strategy,” Pharm. Tech. pp. 46-56 (2005).
    32. L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain,
    “Applications of process analytical technology to crystallization processes,” Adv.
    Drug. Del. Rev. 56(3):349-369 (2004).
    Chapter 2
    1. A. K. Tiwary, “Modification of crystal habit and its role in dosage form
    performance,” Drug. Dev. Ind. Pharm. 27(7): 699-709 (2001).
    2. L. Yu, S. M. Reutzel and G.. A. Stephenson, “Physical characterization of
    polymorphic drugs: an integrated characterization strategy,” PSTT 1(3): 118-127
    (1998).
    3. Y. Yoshihashi, E. Yonemochi, amd K. Terada, “Estimation of initial dissolution
    rate of drug substance by thermal analysis: application for carbamazepine
    150
    hydrate,” Pharm. Devel. Tech. 7(1): 89-95 (2002).
    4. D. J. W. Grant, “Theory and origin of polymorphism,” in H.G. Brittain,”
    Polymorphism in pharmaceutical solids,” Marcel Dekker, New York, pp 1-33
    (1999).
    5. T. L. Threlfall, “Analysis of organic polymorphs. A review,” Analyst
    120(10):2435-2460 (1995).
    6. V. Koradia, G. Chawla, and A. K. Bansal, “Qualitative and quantitative analysis
    of clopidogrel bisulphate polymorphs,” Acta Pharm. 54(3): 193–204(2004).
    7. T. Hosokawa, S. Datta, A. R. Sheth and D. J. W. Grant, “Relationships between
    crystal structures and thermodynamic properties of phenylbutazone solvates,”
    Cryst. Eng. Comm. 6(44): 243-249 (2004).
    8. G. Chawla and A. K. Bansal, “Challenges in polymorphism of pharmaceuticals,”
    CRIPS 5(1): 9-12 (2004).
    9. S. Mirza, I. Miroshnyk, J. Heinämäki, L. Christiansen, M Karjalainen, and J.
    Yliruusi, “Infiuence of solvents on the variety of crystalline forms of
    erythromycin,” AAPS Pharm. Sci. 5(3): 1-9 (2003).
    10. A. R. Sheth and D. J. W. Grant, “Relationship between the structure and
    properties of pharmaceutical crystals,” KONA (23): 36-48 (2005).
    11. A. S. Raw, M. S. Furness, D. S. Gill, R. C. Adams, F. O. H. Jr, and L. X. Yu,
    “Regulatory considerations of pharmaceutical solid polymorphism in abbreviated
    new drug applications (ANDAs),” Adv. Drug Deliv. Rev. 56(3): 397-414 (2004)
    12. R. Storey, R. Docherty, P. Higginson, C. Dallman, C. Gilmore, G. Barr and W.
    Dong, “Automation of solid form screening procedures in the pharmaceutical
    industry – How to avoid the bottlenecks,” Crystallography Reviews. 10(1): 45-56
    (2004).
    151
    13. H. G. Brittain, “ Spectral methods for the characterization of polymorphs and
    solvates,” J. Pharm. Sci. 86(4): 405-412 (1997).
    14. K. Kimura, F. Hirayama, and K. Uekama, “Characterization of tolbutamide
    polymorphs (Burger’s forms II and IV) and polymorphic transition behavior,” J.
    Pharm. Sci. 88(4): 385-391 (1999).
    15. S. Ito, M. Nishimura, Y. Kobayashi, S. Itai, K. Yamamoto, “Characterization of
    polymorphs and hydrates of GK-128, a serotonin3 receptor antagonist,” Int. J.
    Pharm. 151(2): 133-143 (1997).
    16. T. J. Difeo, “Drug product development: a technical review of chemistry,
    manufacturing, and controls information for the support of pharmaceutical
    compound licensing activities,” Drug Dev. Ind. Pharm.29(9): 939-958 (2003).
    17. B. Shah, V. K. Kakumanu, and A.K. Bansal, “Analystical techniques for
    quantification of amorphous/crystalline phase in pharmaceutical solids,” J.
    Pharm. Sci. 95(8): 1641-1665 (2006).
    18. D. Giron, “Application of thermal analysis and coupled techniques in
    pharmaceutical industry,” J. Therm. Anal. Calorim. 68(2): 335-357 (2001).
    19. D. Giron, “Thermal analysis and calorimetric methods in the characterisation of
    polymorphs and solvates,” Thermochim. Acta. 248(2):1-59 (1999).
    20. X. Pan, T. Julian, and L. Augsburger, “Quantitative measurement of
    indomethacin crystallinity in indomethacin-silica gel binary system using
    differential scanning calorimetry and x-ray powder diffractometry,” Pharm. Sci.
    Tech. 7 (1): E1-E7 (2006).
    21. M. D. Ticehurst, R. A. Storey, and C. Watt, “Application of slurry bridging
    experiments at controlled water activities to predict the solid-state conversion
    152
    between anhydrous and hydrated forms using theophylline as a model drug,” Int.
    J. Pharm. 247(2): 1-10 (2001).
    22. H. G. M. Edwards, E. Lawson, M. Matas, L. Shields, and P. York,
    “Metamorphosis of caffeine hydrate and anhydrous caffeine,” J. Chem. Soc.
    Perkin transactions, 2(10): 1985-1990 (1997).
    23. H. Zhu, J. Xu, P. Varlashkin, S. Long, and C. Kidd, “Dehydration, Hydration
    behavior, and structural analysis of Fenoprofen Calcium,” J. Pharm. Sci. 90(7):
    845-859 (2001).
    24. S. Agatonovic-Kustrin, V. Wu, T. Rades, D. Saville, and I.G. Tucker, “Powder
    diffractometric assay of two polymorphic forms of ranitidine hydrochloride,” Int.
    J. Pharm. 184(1): 107-114 (1999).
    25. M. Otsuka, F. Kato, and Y. Matsuda, “Comparative evaluation of the degree of
    indomethacin crystallinity by chemoinfometrical Fourie-Transformed
    Near-Infrared Spectroscopy and conventional Powder X-ray Diffractiometry,”
    Pharm. Sci. 2(1): 1-8 (2000).
    26. Y. Hiramatsu, H. Suzuki, A. Kuchiki, H. Nakagawa, and S. Fujii, “X-ray
    structure studies of lomeridine dihydrochloride polymorphs,” J. Pharm. Sci.
    85(7): 761-766 (1996).
    27. http://micro.magnet.fsu.edu/optics/lightandcolor/lenses.htm, “Introduction to
    lenses.”
    28. S. Amelinckx, D. V. Dyck, J. V. Landuyt, and G. V. Tendeloo, “Handbook of
    microscopy,” Weinheim. New York. pp: 293-320 (1997).
    29. O. Flint, “Chemical Aspects of food microscopy,” Anal. Pro. 29(3):106 (1992).
    30. N. Rasenack, and B. W. Müller, “Crystal habit and tableting behavior,” Int. J.
    Pharm. 244(1-2): 45-57 (2002).
    153
    31. J. Haleblian, and W. McCrone, “Pharmaceutical applications of polymorphism,”
    J. Pharm. Sci. 58(8):911-929 (1969).
    32. S. Mirza, I. Miroshnyk, J. Heinämäki, L. Christiansen, M. Karjalainen, and J.
    Yliruusi, “Influence of solvents on the variety of crystalline forms of
    Erythromycin,” AAPS. Pharm. Sci. 5(2): 1-8 (2003).
    33. A. V. Bonsdorff-Nikander, J. Rantance, L. Christiansen, and J. Yliruusi,
    “Optimizing the crystal size and habit of β-sitosterol in suspension,” AAPS
    Pharm. Sci. Tech. 4(3): 1-8 (2003).
    34. H. Cano, N. Gabas, J. P. Canselier, “Experimental study on the ibuprofen crystal
    growth morphology in solution,” J. Crys. Grow. 224(7): 335-341 (2001).
    35. P. A. Corrigan, V. E. Lyons, G. D. Baranes, and F. G. Hall, “Conductivity
    measurements monitor waste streams,” Envir. Sci. Tech. 4(2): 116-121 (1970).
    36. S. L. Wang, Y. J. Fu, W. C. Zhang, X. Sun, and Z. S. Gao, “In-line bulk
    concentration measurement by method of conductivity in industrial KDP crystal
    growth form aqueous solution,” Cryst. Res. Technol. 35(9): 1027-1034 (2000).
    37. O. D. Linnikov, “spontaneous crystallization of potassium chloride from aqueous
    and aqueous-ethanol solutions & Part I: Kinetics and mechanism of the
    crystallization process,” Cryst. Res. Technol. 39(6): 516-528 (2004).
    38. I. Kabdasli, S. A. Parsons, and O. Tünay, “Effect of major ions on induction time
    of struvite precipitation,” CCACAA. 79(2): 243-251 (2006).
    39. O. D. Linnikov, “Spontaneous crystallization of sodium chloride from aqueous
    and aqueous-ethanol solutions & Part I: kinetics and mechanism of the
    crystallization process,” Cryst. Res. Technol. 41(1): 10-17 (2006).
    40. M. L. Balboni, “Process analytical technology,” Pharm. Tech. 27(10):54-61 (2003).
    154
    Chapter 3
    1. K. J. Roberts, R. Docherty, P. Bennema, and L . A. M J Jetten, “The importance
    of considering growth-induced conformational change in predicting the crystal
    habit of benzophenone,” J. Phys. D:Appl. Phys. 26(B8): B7-B21 (1993).
    2. R. Hiremath, S. W. Varney, and J. A. Swift, “Selective growth of less stable
    polymorph of 2-iodo-4-nitroaniline on a self-assembled monolayer template,”
    Chem. Commun. 7(23): 2676-267 (2004).
    3. J. Aizenberg, “Crystallization in Patterns : A bio-inspired approach,” Adv. Mater.
    16(15): 1295-1302 (2004).
    4. S. P. Duddu, F. K.Y. Fung, and D. J. W. Grant, “Effect of doping with the
    opposite enantiomer on the thermodynamic properties of (-)-ephedrinium
    2-naphthalen -esulphonate crystals,” J. Phys. D:Appl. Phys. 26(B8): B41-B47
    (1993).
    5. T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata,
    and T. Mitani, “Improved lifetime of an OLED using aluminum (III) tris
    (8-hydroxyquinolate),” Sci. Tech. Adv. Matt. 5(3): 331–337 (2004).
    6. A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale rapid melting
    and crystallization of semiconductor thin films,” Nanoletters 5(10): 1924-1930
    (2005).
    7. K.J. Kim, H.S. Kim, “Coating of energetic materials using crystallization,” Chem.
    Eng. Technol. 28(8): 946 – 951 (2005).
    8. T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role
    of solvent,” Org. Process Res. Dev. 4(5): 384-390 (2000).
    9. S. Gracin, and A. C. Rasmuson, “Solubility of phenylacetic acid,
    p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid,
    155
    and ibuprofen in pure solvents,” J. Chem. Eng. Data. 47(6): 1379-1383 (2002).
    10. C. K. Chen, and A. K. Singh, “A “Bottom-Up” Approach to process development:
    application of physicochemical properties of reaction products toward the
    development of direct-drop processes,” Org. Process Res. Dev. 5(5): 508-513
    (2001).
    11. J. L. Hilden, C. E. Ryeyes, M. J. Kelm, j. S. Tan, J. G. Stowell, and K. R. Morris,
    “Capillary precipitation of a highly polymorphic organic compound,” Cryst.
    Growth. Des. 3(6): 921-926 (2003).
    12. W. W. Wang, and Y. J. Zhu, “Synthesis of PbCrO4 and Pb2CrO5 rods via a
    microwace-assisted ionic liquid methods,” Cryst. Growth. Des., 5(2): 505-507
    (2005).
    13. D. Braga, and F. Grepioni, “Making crystals from crystals: a green route to
    crystal engineering and polymorphism,” Chem. Commun. 7(29): 3635–3645
    (2005).
    14. J. E. Aber, S. Arnold, and B. A. Garetz, “Strong dc electric field applied to
    supersaturated aqueous glycine solution induces nucleation of the γ polymorph,”
    Phys. Rev. Lett. 94(14): 145503 (2005).
    15. M. Lang, A. L. Grzesiak, and A. J. Matzgar, “The Use of polymer heteronuclei
    for crystalline polymorph selection,” J. Am. Chem. Soc. 124(50): 14834-14835
    (2002).
    16. A. M. Garcia, and E. S. Ghaly, “Preliminary spherical agglomerates of water
    soluble drug using natural polymer and cross-linking technique,” J. Control.
    Relea. 40(3): 179-186 (1996).
    17. K. Sato, “Polymorphic transformations in crystal growth” J. Phys. D: Appl. Phys.
    26(8B): B77-B84 (1993).
    156
    18. S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T.
    Lee, F. Nikfar, M. Davidovich, S. Srivastava, and S. Kiang, “Control of the
    particle properties of a drug substance by crystallization engineering and the
    effect on drug product formulation,” Org. Pro. Res. Dev. 9(6):911-922 (2005).
    19. L. Yu, and K. Ng, “Glycine crystallization during spray drying: The PH effect on
    salt and polymorphic forms,” J. Pharm. Sci. 91(11): 2367-2375 (2002).
    20. C. Wibowo, W. Chang, and K.M. Ng, “Design of integrated crystallization
    systems,” AIChE. J. 47(11): 2474-2492 (2001).
    21. W. I. Cross, N. Blagden, and R. J. Davey, “A whole output strategy for
    polymorph screening: combining crystal structure prediction, graph set analysis,
    and targeted crystallization experiments in the case of diflunisal,” Cryst. Growth.
    Des. 3(2):151 -158 (2003).
    22. L. C. Garzόn, and F. Martínez, “Temperature dependence of solubility for
    ibuprofen in some organic and aqueous solvents,” J. Sol. Chem. 33(11):
    1379-1395 (2004).
    23. T. L. Therlfall, “Analysis of organic polymorphs a review,” Analyst 120:
    2435-2460 (1995).
    24. L. Yu, S. M. reutzel, and G. A. Stephenson, “Physical characterizationof
    polymorphic drugs: an integrated characterization strategy,” PSTT. 1(3):118-217
    (1998).
    25. S. Datta, and D. J. W. Grant, “Crystal structures of drugs: advances in
    determination, prediction and engineering,” Nat. Rev. Drug. Discov. 3(1): 42-57
    (2004).
    26. R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth,
    A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit,
    157
    and M. V. Raumer, “Polymorphism-integrated approach from high-throughput
    screening to crystallization optimization,” J. Therm. Anal. Calorim. 73(2):
    429-440 (2003).
    27. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M.J. Read, A. V.
    Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner. “High-throughput
    crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical
    solids,” Adv. Drug. Deliv. Rev. 56(3): 275-300 (2004).
    28. D. Gao, and J. H. Raytting, “Use of solution calorimetry to determine the extent
    of crystallinity of drugs and excipients,” Int. J. Pharm. 151(2): 183-192 (1997).
    29. C. R. Navarro, and E. Dehne, “Salt weathering: influence of evaporation rate
    supersaturation and crystallization pattern,” Earth Surf. Process. Landforms.
    24(3): 191-209 (1999).
    30. A. K. Tiwary, “Modification of crystal habit and its role in dosage from
    performance,” Drug Dev. Ind. Pharm. 27(7): 699-709 (2001).
    31. M. Lahav, and L. Leiserowitz, “The effect of solvent on crystal growth and
    crystal habit,” Chem. Eng. Sci. 56(7): 2245-2253 (2001).
    32. H. Cao, N. Gabas, and J. P. Canselier, “Experimental study on the ibuprofen
    crystal growth crystal habit in solvent,” J. Cryst. Growth. 224(3-4): 335-341
    ( 2001).
    33. H. A. Garekani, F. Sadeghi, A. Badiee, S. A. Mostafa, and A. R. ajabi-Siahboomi,
    “Crystal habit modifications of ibuprofen and their physico-mechanical
    characteristics,” Drug. Dev. Ind. Pharm. 27(8): 803-809 (2001).
    34. 1 G. M. Khan, and Z. Jiabi, “Preparation, characterization, and evaluation of
    physicochemical properties of different crystalline forms of ibuprofen,” Drug
    158
    Dev. Ind. Pharm. 24(5): 463-471 (1998).
    35. P. D. Martino, M. Beccerica, E. Joiris, G.. F. Palmieri, A. Gayot, and S. Martelli,
    “Influence of crystal habit on the compression and densification mechanism of
    ibuprofen,” J. Cryst. Growth. 243(2): 345-355 (2002).
    36. N. Rasenack, and B. W. Muller, “Properties of ibuprofen crystallization under
    various conditions: a comparative study,” Drug Dev. Ind. Pharm. 28(9):
    1077-1089 (2002).
    37. V. Labhasetear, S. V. Deshmukh, and A. K. Dorle. “Studies on some crystalline
    forms of ibuprofen,” Drug Dev. Ind. Pharm. 19(6): 631-641 (1993).
    38. Z. Jane, and D. J. W. Grant, “Relationship between physical properties and
    crystal structures of chiral drugs,” J. Pharm. Sci. 86(10): 1073-1078 (1997).
    39. A. Somogyi, F. Bochner and D. Foster, “Inside the isomers: the table of chiral
    switches,” Australian. Prescriber. 27(2): 47-49 (2004).
    40. G. L. Perlovich, S. V. Kurkov, L. K. Hansen, and A. Baure-Brandl,
    “Thermodynamics of sublimation, crystal lattice energies, and crystal structures
    of racemates and enantiomers: (+)- and (+/-)-ibuprofen,” J. Pharm. Sci. 93(3):
    654-666 (2004).
    41. Y. Yi, D. Hatziavramidis, and A. S. Myerson, “Development of a Small-scale
    automated solubility measurement apparatus,” Ind. Eng. Chem. Res. 44(15):
    5427-5433 (2005).
    42. R. Mohan, H. Lorenz, and A. S. Myerson, “Solubility measurement using
    differential scanning calorimetry,” Ind. Eng. Chem. Res. 41(19): 4854-4862
    (2002).
    43. K. Park, J. M. B. Evans, and A. S. Myerson, “Determination of Solubility of
    Polymorphs Using Differential Scanning Calorimetry,” Cryst. Growth Des. 3(6):
    159
    991-995 (2003).
    44. J. S. Drury, “Miscibility of organic solvents,” Ind. Eng. Chem. 44(11): 2744
    (1952).
    45. N. Rasenack, and B. W. Muller, “Crystal habit and tableting behavior,” Int. J.
    Pharm. 244(1-2): 45-57 (2002).
    46. S. Lee, K. Nam, M. S. Kim, S. W. Jun, J. S. Park, J.S. Woo, and S. J. Hwang,
    “Preparation and characterization of solid dispersions itraconazole by using
    aerosol solvent extraction system improvement in drug solubility and
    bioavailability,” Arch. Pharm. Res. 28(7): 866-874 (2005).
    47. A.Pawar, A. Paradkar, S. Kadam, and K. Mahadik, “Agglomeration of ibuprofen
    with talc by novel crystallo-co-agglomeration technique,” AAPS. PharmSciTech.
    5 (4): 1-6 (2004).
    48. J. M. E. Buyan, N. Shankland and D. B. Sheen, “Solvent effects on the crystal
    habit of ibuprofen,” J. Pharm. Sci. 58: 1505-1509 (1969).
    49. A. H. NaDa, S. M. Saleh, and B. W. Muller, “Crystal modification for improving
    the physical and chemical properties of ibuprofen,” Pharm. Technol. 29(11):
    90-101 (2005).
    Chapter 4
    1. K.J. Kim, H.S. Kim., ”Coating of Energetic Materials using Crystallization”
    Chem. Eng. Technol. 28(8): 946 – 951 (2005).
    2. T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role
    of solvent,” Org. Process Res. Dev. 4(5): 384-390 (2000).
    3. A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos. “Nanoscale rapid melting
    160
    and crystallization of semiconductor thin films,” NANO LETTERS
    5(10):1924-1930 (2005).
    4. T. S. Kim, D.H. Kim, H.J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata,
    and T. Mitani, “Improved lifetime of an OLED using aluminum (III) tris
    (8-hydroxyquinolate),” Science and Technology of Advanced Materials. 5(3):
    331–337 (2004).
    5. S. Gracin, and A. C. Rasmuson, “ Solubility of phenylacetic acid,
    p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid,
    and ibuprofen in pure solvents,” J. Chem. Eng. Data. 47(6): 1379-1383 (2002).
    6. E. A. Abdel-Aal, M. M. Rashad, and H. El-Shall, “Crystallization of calcium
    sulfate dihydrate at different supersaturation ratios and different free sulfate
    concentrations,” Cryst. Res. Technol. 39(4): 313-321 (2004).
    7. C. J. Price, “Take some solid steps to improve crystallization,” Chem. Eng. Prog.
    93(9): 34-43 (1997).
    8. A. S. Myerson and R. Ginde in “Handbook of industrial crystallization,” edited
    by A. S. Myerson (Butterworths, Montvale, MA, ) pp 18-20 (1992).
    9. J. W. Mullin, “Crystallization 3rd,” Butterworths Heinemann, London, pp
    172-201 (1993).
    10. L. Bromberg, J. Reshba-Step, and Terrence Scott, “Insulin particle formation in
    supersaturated aqueous solutions of poly(ethylene glycol),” Biophy. J.
    89(5):3424-3433 (2005).
    11. A. S. Myerson and R. Ginde in “Handbook of industrial crystallization,” edited
    by A. S. Myerson (Butterworths, Montvale, MA,) pp 43-51 (1992).
    12. J. B. Rawlings, S. M. Miller, and W. R. Witkowski, “Model identification and
    control of solution crystallization processes: a review,” Ind. Eng. Chem. Res.
    161
    32(7):1275-1296 (1993).
    13. X.Y. Liu, “A new kinetic model for three-dimensional heterogenous nucleation,”
    J. Chem. Phys. 11(4):1628-1635 (1999).
    14. K. V. R. Prasad, R. I. Ristic, D. B. Sheen, and J. N. Sherwood, “Crystallization of
    paracetamol from solution in the presence and absence of impurity,” Int. J.
    Pharm. 215(1-2): 29-44 (2001).
    15. K. Sangwal, and T. Pałczyńska, “On the supersaturation and impurity
    concentration dependence of segregation coefficient in crystals grow from
    solutions,” J. Cryst. Grow. 212(3-4): 522-531 (2000).
    16. H. Qu, M. Louhi-Kultanen, and J. Kallas, “In-line image analysis on the effects
    of additives in batch cooling crystallization,” J. Cryst. Grow. 289(2): 286-294
    (2006).
    17. W. Beckmann, “Seeding the desired polymorph: background, possibilities,
    limitations, and case studies,” Org. Process. Res. Dev. 4(5): 372-383 (2000).
    18. M. M. Rashad, M. H. H. Mahmound, I. A. Ibrahim, and E. A. Abdel-Aal, “Effect
    of citric acid and 1,2-dihydroxybenzene 3,5-disulfonic acid on crystallization of
    calcium sulfate dihydrate under simulated conition of phosphoric acid
    production,” Cryst. Res. Technol. 40(8): 741-747 (2005).
    19. S. Datta, and D. J. W. Grant, “Crystal structures of drugs: advances in
    determination, prediction and engineering,” Nature 3(1):42-57 (2004).
    20. Z. J. Li, M. T. Zell, E. J. Munsin, and D. J. W. Grant, “Characterization of
    racemic species of chiral drugs using thermal analysis, thermodynamic
    calculation, and structural studies,” J. Pharm. Sci. 88(3): 337-346 (1999).
    21. T. Buhse, D. K. Kondepudi, and B. Hoskins, “Kinetics of chiral resolution in
    stirred crystallization of D/L-glutamic acid,” Chirallity 11(4): 343-348 (1999).
    162
    22. L. Addadi, S. Weinstein, E. Gati, I. Weissbuch, and M. Lahav, “Resolution of
    conglomerates with the assistance of tailor-made impurities. Generality and
    mechanistic aspects of the “rule of reversal,” J. Am. Chem. Soc. 104(17):
    4610-4617 (1982).
    23. S. P. Duddu, F. K.Y. Fung, and D. J. W. Grant, “Effect of doping with the
    opposite enantiomer on the thermodynamic properties of (-)-ephedrinium
    2-naphthalenesulphonate crystals,” J. Phys. D: Appl. Phys. 26(8B): B41-B47
    (1993).
    24. S. P. Duddu, F. K. Y. Fung, D. J. W. Grant, “Effects of crystallization in the
    presence of the opposite enantiomer on the crystal properties of
    (SS)-(+)-pseudoephedrinium salicylate,” Int. J. Pharm. 127(1): 53-63 (1996).
    25. Z. J. Li, and D. J. W. Grant, “Effects of excess enantiomer on the crystal
    properties of a racemic compound: ephedrinium 2-naphthalenesulfonate,” Int. J.
    Pharm. 137(1): 21-31 (1996).
    26. M. C.Gohel,” Overview on chirality and applications of stereo-selective
    dissolution testing in the formulation and development work,” Dissolution
    Technologies 10(3):16-20 (2003).
    27. J. F. Remenar, J. M. MacPhee, B. K. Larson, V.A. Tyagi, J. H. Ho, D. A. McIlroy,
    M. B. Hickey, P. B. Shaw, and Ö. Almarsson, “Salt Selection and Simultaneous
    Polymorphism Assessment via High-Throughput Crystallization: The Case of
    Sertraline.,” Org. Proc. Res. Dev., 7 (6):990 -996 (2003).
    28. S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V.
    Lemmo, S. Ellis, M. J. Cima, C. R. Gardner,” High-throughput crystallization:
    polymorphs, salts, co-crystals and solvates of pharmaceutical solids.,” Adv. Drug.
    163
    Deliv. Rev., 56(3):275-300 (2004).
    29. A. Ridell, H. Evertsson , S. Nilsson, and L. Sundelöf, “Amphiphilic association
    of ibuprofen and two nonionic cellulose derivatives in aqueous solution.,” J.
    Pharm. Sci. 88(11): 1175-1181 (2000).
    30. J. Israelachvili, “Intermolecular and Surface Forces, 6th” Academic Press, New
    York.(1997).
    31. P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sulliven, and D. O’Grady,
    “A review of the use of process analytical technology for the understanding and
    optimization of production batch crystallization processes,” Org. Pro. Res. Dev.
    9(3): 348-355 (2005).
    32. M. Birch, S. J. Fussel, P. D. Higginson, N. McDowall, and I. Marziano,
    “Towards a PAT-Base strategy for crystallization development,” Org. Pro. Res.
    Dev. 9(3): 360-364 (2005).
    33. L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain,
    “Applications of process analytical technology to crystallization processes,” Adv.
    Drug. Del. Rev. 56(3):349-369 (2004).
    34. Y Zhang and D. J. W. Grant, “Similarity in structures of racemic and
    enantiomeric ibu profen sodium dihydrates.,” Acta Cryst. C61:m435-m438
    (2005).
    35. B. J. Armitage, J. F. Lampard, A. Smith, “Composition of S(-) Sodium
    Ibuprofen.,” US Patent 6242000 (1997).
    36. B. J. Armitage, J. F. Lampard, A. Smith, “Composition of S(-) Sodium
    Ibuprofen.,” US Patent 5696165 (1997).
    37. R. Hilfiker, S. M. D. Paul, and M. Szelagiewicz in “Polymorphism,” edited by R.
    Holfiker (Wiley-Vch GmbH & Co. KGaA,) pp 287-308 (2006).
    164
    38. D. Winn, M. F. Doherty, “Anew technique for predicting the shape of
    solution-grown organic crystals,” AIChE 44(11): 2501-2514 (1998).
    39. B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Hornedo,
    “General principles of pharmaceutical solid polymorphism: a supramolecular
    perspective,” Adv. Drug. Del. Rev. 56(3): 241-274 (2004).
    40. R. Boistelle, and J. P. Astier, “Crystallizatiom mechanisms solution,” J. Crys.
    Grow. 90(1-3): 14-30 (1988).
    41. D. K. Kondepudi, and K. E. Crook, “Theory of conglomerate crystallization in
    the presence of chiral impurities,” Crys. Grow. Des. 5(6):2173-2179 (2005).
    42. M. Kitamura, “Controlling factor of polymorphism in crystallization process,” J.
    Cryst. Growth. 237–239(3): 2205–2214 (2002).
    43. A. Lancia, D. Musmarra, and M. Prisciandaro, “Measure induction period for
    calcium sulfate dihydrate precipition,” AIChE J. 45(2): 390-397 (1999).
    44. B. Biscans, and C. Laguerie, “Determination of induction time of lysozyme
    crystals by laser diffraction,” J. Phys. D: Appl. Phys. 26(8B): 118-122 (1993).
    45. H. Hu, T. Hale, X. Yang, and L. J. Wilson, “A spectrophotometer-based method
    for crystallization induction time period measurement,” J. Cryst. Grow. 232(1):
    86-92 (2001).
    46. B. K. Paul, and M. S. Joshi, “The effect of supersaturation on the induction
    period of potassium dihydrogen phosphate crystals grown from aqueous
    solution,” J. Phys. D: Appl. Phys. 9(8): 1253-1256 (1976).
    47. N. Kubota, “Effect of impurities on the growth kinetics of crystals,” Cryst. Res.
    Technol. 36(8-10): 749-769 (2001).
    48. R. Siddheswaran, R. Sankar, M. Rathnakumari, R. Jayavel, P. Murugakoothan,
    and P. Sureshkemar, “Nucleation, growth and characterization studies of a
    165
    nonlinear optical crystal-tris allylthiourea cadmium chloride (ATCC),” Laser
    Phys. Lett. 3(12): 588-593 (2006).
    49. R. A. Granberg, and Ǻ.C. Rasmuson, “Crystal growth rates of paracetamol in
    mixtures of water + acetone + toluene,” AIChE J. 51(9): 2441-2456 (2005).
    50. H. E. L. Madsen, “Crystal growth kinetics of copper phosphate from acit solution
    at 37 °C,” J. Cryst. Grow. 275(1): e191-e196 (2005).
    51. T. Kanagasekaran, M. Gunasekaran, P. Srinivasan, D. Jayaraman, R.
    Gopalakrishnan, and P. Ramasamy, “Studies on growth, induction period,
    interfacial energy and metastable zonewidth of m-nitroaniline,” Cryst. Res.
    Technol. 40(12): 1128-1133 (2005).
    52. W. Wu, and G.. H. Nancollas, “The relationship between surface free-energy and
    kinetics in the mineralization and demineralization of dental hard tissue,” Adv.
    Dent. Res. 11(4): 566-575 (1997).
    53. J.W. Mullin, “Crystallization, 3rd” Butterworth-Heinemann, Oxford, Great
    Britain, pp. 202-263 (1993)
    54. G. Arunmozhi, E. D. M. Gomes, and S. Gansamorrthy, “Growth kinetics of
    zinc(tris)thiourea sulphate (ZTS) crystals,” Cryst. Res. Technol. 39(5): 408-413
    (2004).
    55. P. Pantaraks, and A. E. Flood, “Effect of growth rate history on current crystal
    growth: a second look at surface effects on crystal growth rates,” Cryst. Growth.
    Des. 5(1): 365-371 (2005).
    56. Z. J. Li, and D. J. W. Grant, “Relationship between physical properties and
    crystal structures of chiral drugs,” J. Pharm. Sci. 86(10): 1073-1078 (1997).
    57. G. G.Z. Zhang, S. Y.L. Paspal, R. S.Anarayanan, and D. J.W. Grand, “Racemic
    species of sodium ibuprofen: characterization and polymorphic relationships,” J.
    166
    Pharm. Sci. 92(7): 1356-1365 (2003).
    58. F. Han, J. Huang , B. Zheng, and Z. Li,” Surface properties of bolaamphiphiles in
    ethanol/water mixed solutions.,” Colloids Surf., A. 242(1-3): 115-122 (2004)
    59. Y. Zhang, and D. J. W. Grant, “Similarity in structures of racemic and
    enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr., Sect. C. C61(Pt
    9): m435-m438 (2005).
    167

    QR CODE
    :::