跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡佳銘
Chia-ming Tsai
論文名稱: 使用重複延遲量測技術具負載自適應之全數位時脈偏移校正電路
All-Digital Clock De-Skew Circuit with Adaptive Loading Using Reused Delay Measurement Technique
指導教授: 鄭國興
Kuo-hsing Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 89
中文關鍵詞: 全數位時脈偏移校正電路負載自適應同步複製延遲電路
外文關鍵詞: all-digital, de-skew circuit, adaptive loading, synchronous mirror delay
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一個能隨時根據輸出負載變化進行鎖定修正,並且使用重複延遲量測技術來減少電路面積的新式全數位時脈偏移校正電路。能夠隨時根據輸出負載變化進行鎖定修正這點改善了一般同步複製延遲電路只能用於固定負載的缺點,另外使用重複延遲量測技術則達成了只使用單一硬體的架構來取代掉傳統同步複製延遲電路架構中單調、重複性高、卻又佔用了大量面積的量測延遲線,進一步的減少電路面積,更加強化同步複製延遲電路面積小的優點。
    本論文所實現的使用重複延遲量測技術具負載自適應之全數位時脈偏移校正電路是使用90 nm製程來製作設計,整體晶片的總面積為955 × 955 um2,其中核心電路的面積為106 × 80 um2,操作電壓為1 V,可用的操作頻率範圍為0.34 – 1.8 GHz,功率消耗在操作頻率為1.8 GHz時為6.4 mW。電路的鎖定時間為最多19個週期,鎖定後的輸出時脈訊號在各種操作頻率下最大靜態相位誤差為20.58 ps,方均根抖動量為2.42 ps,峰對蜂抖動量為18.89 ps。


    In this thesis, a modern all-digital clock de-skew circuit is proposed. It not only can be calibrated by itself according to the variation of output loading, but also be reduced the area by the reused delay measurement technique. The application of the conventional SMD is restricted because it can only be used with a fixed output loading, but now the proposed all-digital clock de-skew circuit is no longer be restricted because it can be calibrated by itself according to the variation of output loading. The measurement delay line of conventional SMD is monotonous, repeated, but costs a lot of area, so this study proposed the reused delay measurement technique. The reused delay measurement technique is reusing only a single unit of hardware to measure the time difference instead of using the measurement delay line, so it can cost less area and enhance the advantage of the SMD.
    This study was implemented by 90 nm process. The area of whole chip is 955 × 955 um2, and the area of the core circuits is 106 × 80 um2. The supply power voltage is 1 V, and the operating frequency is 0.34 GHz to 1.8 GHz. The power consumption at 1.8 GHz is 6.4 mW. The locking time is less than 19 cycles, and the maximum of the static phase error is 20.58 ps, the rms jitter is 2.42 ps, and the peak-to-peak jitter is 18.89 ps.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 viii 表目錄 x 第1章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 4 第2章 同步複製延遲電路背景簡介 5 2.1 傳統式同步複製延遲電路架構[1] 5 2.2 交錯式同步複製延遲電路架構[2] 9 2.3 直接偵測時脈偏移式同步複製延遲電路[3] 10 2.4 兩階段調整式同步複製延遲電路 11 2.4.1 逐步逼近式同步複製延遲電路[4] 12 2.4.2 環型位移式同步複製延遲電路[5] 13 2.5 各種同步複製延遲電路的比較 14 第3章 使用重複延遲量測技術具負載自適應之全數位時脈偏移校正電路架構與原理 15 3.1 電路架構 15 3.2 電路原理 18 第4章 使用重複延遲量測技術具負載自適應之全數位時脈偏移校正電路子電路介紹 23 4.1 粗調電路介紹 23 4.1.1 邊緣偵測器 24 4.1.2 重複使用式量測延遲電路 25 4.1.3 可移位複製控制電路 28 4.1.4 可變延遲線 29 4.2 細調電路介紹 33 4.2.1 相位比較器 34 4.2.2 逐步逼近暫存器和上數下數計數器 35 4.2.3 輸出驅動器 38 4.2.4 邊界偵測器 38 第5章 晶片模擬與量測 41 5.1 電路模擬 41 5.1.1 可用操作頻率範圍模擬結果 41 5.1.2 鎖定過程模擬結果 42 5.1.3 在不同輸出負載下鎖定完成後的靜態相位誤差模擬結果 47 5.1.4 輸出負載發生變化時電路回復鎖定模擬結果 47 5.2 晶片佈局 49 5.3 量測環境考量 53 5.4 晶片與印刷電路板照相 56 5.5 晶片量測結果 57 5.5.1 可用操作頻率範圍量測結果 57 5.5.2 鎖定過程量測結果 59 5.5.3 在各種操作頻率下鎖定完成後的靜態相位誤差量測結果 61 5.5.4 負載變化後回復鎖定狀態量測結果 62 5.6 規格比較 66 第6章 結論與未來研究方向 69 6.1 結論 69 6.2 未來研究方向 69 參考文獻 71

    [1] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J. M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, K. Yoshida, H. Yoshino, S. Hashimoto, T. Yoshii, M. Ichinose, T. Imura, M. Uziie, S. Kikuchi, K. Koyama, Y. Fukuzo, and T. Okuda, "A 2.5-ns Clock Access, 250-MHz, 256-Mb SDRAM with Synchronous Mirror Delay," IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1656 – 1668, Nov. 1996.
    [2] T. Saeki, H. Nakamura, and J. Shimizu, "A 10ps Jitter 2 Clock Cycle Lock Time CMOS Digital Clock Generator Based on an Interleaved Synchronous Mirror Delay Scheme," in Proc. IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 1997, pp. 109 – 110.
    [3] T. Saeki, K. Minami, H. Yoshida, and H. Suzuki, "A Direct-Skew-Detect Synchronous Mirror Delay for Application-Specific Integrated Circuits," IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 372 – 379, Mar. 1999.
    [4] K.-H. Cheng, K.-W. Hong, C.-H. Chen, and J.-C. Liu, "A High Precision Fast Locking Arbitrary Duty Cycle Clock Synchronization Circuit," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1218 – 1228, Jul. 2011.
    [5] K.-H. Cheng, K.-W. Hong, C.-F. Hsu, and B.-Q. Jiang, "An All-Digital Clock Synchronization Buffer with One Cycle Dynamic Synchronizing," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 1818 – 1827, Oct. 2012.
    [6] M.-Y. Kim, D. Shin, H. Chae, and C. Kim, "A Low-Jitter Open-Loop All-Digital Clock Generator with Two-Cycle Lock-Time," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 10, pp. 1461 – 1469, Oct. 2009.
    [7] D. Sheng, C.-C. Chung, and C.-Y. Lee, "Wide Duty Cycle Range Synchronous Mirror Delay Designs," Electron. Lett., vol. 46, no. 5, pp. 338 – 340, Mar. 2010.
    [8] K.-H. Choi, J.-B. Shin, J.-Y. Sim, and H.-J. Park, "An Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital PLL," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 2055 – 2063, Sep. 2009.
    [9] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, E. Kakehashi, J. M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, K. Yoshida, H. Yoshino, S. Hashimoto, T. Yoshii, M. Ichinose, T. Imura, M. Uziie, K. Koyama, Y. Fukuzo, and T. Okuda, "A 2.5 ns Clock Access 250 MHz 256 Mb SDRAM with a Synchronous Mirror Delay," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1996, pp. 374 – 375.
    [10] D. Shim, D.-Y. Lee, S. Jung, C.-H. Kim, and W. Kim, "An Analog Synchronous Mirror Delay for High-Speed DRAM Application," IEEE J. Solid-State Circuits, vol. 34, no. 4, pp. 484 – 493, Apr. 1999.
    [11] J.-S. Chae, D. Kim, and D. M. Kim, "Wide Range Single-Way-Pumping Synchronous Mirror Delay," Electron. Lett., vol. 36, no. 11, pp. 939 – 940, May 2000.
    [12] S.-J. Jang, Y.-H. Jun, J.-G. Lee, and B.-S. Kong, "ASMD with Duty Cycle Correction Scheme for High-Speed DRAM," Electron. Lett., vol. 37, no. 16, pp. 1004 – 1006, Aug. 2001.
    [13] K. Sung, B.-D. Yang, and L.-S. Kim, "Low Power Clock Generator Based on Area-Reduced Interleaved Synchronous Mirror Delay," Electron. Lett., vol. 38, no. 9, pp. 399 – 400, Apr. 2002.
    [14] A. M. Fahim, "A Compact, Low-Power Low-Jitter Digital PLL," in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2003, pp. 101 – 104.
    [15] K. Sung and L.-S. Kim, "A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register," IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1997 – 2004, Nov. 2004.
    [16] Y. J. Yoon, H. I. Kwon, J. D. Lee, B. G. Park, N. S. Kim, U. R. Cho, and H. G. Byun, "Synchronous Mirror Delay for Multiphase Locking," IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 150 – 156, Jan. 2004.
    [17] C.-L. Hung, C.-L. Wu, and K.-H. Cheng, "Arbitrary Duty Cycle Synchronous Mirror Delay Circuits Design," in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2006, pp. 283 – 286.
    [18] H. Nakaya, Y. Sasaki, N. Kato, F. Arakawa, and T. Shimizu, "An Alternative Cyclic Synchronous Mirror Delay for Versatility in Highly Integrated SoC," in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2006, pp. 279 – 282.
    [19] K.-H. Cheng, C.-W. Su, and S.-W. Lu, "Wide-Range Synchronous Mirror Delay with Arbitrary Input Duty Cycle," Electron. Lett., vol. 44, no. 11, pp. 665 – 667, May 2008.
    [20] D. Shin, J. Song, H. Chae, and C. Kim, "A 7 ps Jitter 0.053 mm2 Fast Lock All-Digital DLL with a Wide Range and High Resolution DCC," IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2437 – 2451, Sep. 2009.
    [21] J.-S. Wang, C.-Y. Cheng, J.-C. Liu, Y.-C. Liu, and Y.-M. Wang, "A Duty-Cycle-Distortion-Tolerant Half-Delay-Line Low-Power Fast-Lock-in All-Digital Delay-Locked Loop," IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1036 – 1047, May 2010.
    [22] K.-H. Cheng, K.-W. Hong, Y.-L. Lo, C.-L. Wu, and C.-H. Lee, "Dynamic Frequency Tracking and Phase Error Compensation Clock De-Skew Buffer," Electron. Lett., vol. 46, no. 25, pp. 1653 – 1655, Dec. 2010.
    [23] Y.-S. Kim, S.-K. Lee, H.-J. Park, and J.-Y. Sim, "A 110 MHz to 1.4 GHz Locking 40-Phase All-Digital DLL," IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 435 – 444, Feb. 2011.
    [24] S. Hoyos, C. W. Tsang, J. Vanderhaegen, Y. Chiu, Y. Aibara, H. Khorramabadi, and B. Nikolic, "A 15 MHz to 600 MHz, 20 mW, 0.38 mm2 Split-Control, Fast Coarse Locking Digital DLL in 0.13 um CMOS," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 3, pp. 564 – 568, Mar. 2012.
    [25] Y.-H. Tu, K.-H. Cheng, C.-H. Hsu, and H.-Y. Huang, "A Low Supply Voltage Synchronous Mirror Delay with Quadrature Phase Output," in Proc. IEEE Symp. Design and Diagnostics of Electronic Ciucuits & Systems, Apr. 2014, pp. 163 – 166.
    [26] 許齊發, "一個新型全數位式高解析度可變責任週期之同步複製延遲電路," 在職專班碩士, 電機工程學系, 國立中央大學, 桃園市, 2009.
    [27] 涂祐豪, "具寬頻操作及自我相位校正之延遲鎖定迴路與頻率倍頻器," 碩士, 電機工程學系, 國立中央大學, 桃園市, 2010.
    [28] 洪凱尉, "全數位式高解析度快速鎖定時脈同步電路之設計與實現," 博士, 電機工程學系, 國立中央大學, 桃園市, 2011.
    [29] 李柏逸, "具數位頻帶選擇器和可適性相位頻率偵測器之快速鎖定鎖相迴路," 碩士, 電機工程學系, 國立中央大學, 桃園市, 2013.

    QR CODE
    :::