| 研究生: |
陳盈臻 YING-CHEN CHEN |
|---|---|
| 論文名稱: |
多群基因演化及複數型模糊類神經系統在多目標數據預測之研究 Complex Neuro-Fuzzy System with Multi-Group Genetic Algorithm for Multi-Target Data Prediction |
| 指導教授: |
李俊賢
Chunshien Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 特徵選取 、複數模糊集 、複數型模糊類神經系統 、基因演算法 、遞迴最小平方估計 、股票預測 |
| 外文關鍵詞: | Feature selection, Complex fuzzy set, Complex neuro-fuzzy system (CNFS), Genetic algorithm, Recursive least squares estimator (RLSE), Stock prediction |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,針對多目標數據預測提出了一種方法,其中以複數型模糊類神經系統(Complex neuro-fuzzy system,CNFS)為計算模型,並以混合式機器學習算法—多群基因演算法搭配遞迴式最小平方估計法(記為MGGA-RLSE)用於複數型模糊類神經系統的參數學習。在數據選擇和模型構建中,以特徵選取出對目標有貢獻的特徵組成的子集。複數型模糊類神經系統使用複數模糊集(Complex fuzzy sets,CFSs)和Takagi-Sugeno(T-S)模糊If-Then規則。複數模糊集是以複數平面中單位圓盤內定義出的複數型歸屬程度來描述集合與其元素之間關係的模糊集合。由於複數型模糊類神經系統使用的複數模糊集,該模型可以同時處理最多六個實數型的目標。MGGA-RLSE結合了多群基因演算法(Multi-group genetic algorithm,MGGA)和眾所周知的遞迴式最小平方估計法(Recursive least squares estimator,RLSE),其中前者用於演化T-S中If-parts的參數,後者用於更新T-S中Then-parts的參數。在多群基因演算法中包含數個族群,每一個族群中都有很多個體。每一個個體被認為是模型中If-part規則參數的潛在解決方案。由於有多個族群,故期許多群基因演算法能找到效能好的最佳解決方案。最後,以四個實驗檢視本論文所提出的方法之優勢。
In this study, an approach has been presented for multi-target data prediction, where a complex neuro-fuzzy system (CNFS) is used as a computing model and a hybrid ma-chine learning algorithm, denoted as MGGA-RLSE, is used for the parameter learning of the CNFS. For data selection and model construction, feature selection has been used to select a compact subset of features contributive to targets. The CNFS uses complex fuzzy sets (CFSs) and Takagi-Sugeno (T-S) fuzzy If-Then rules. CFS is a fuzzy set using com-plex-valued membership degrees defined within the unit disc of the complex plane to de-scribe the relationship between the set and its elements. Due to CFSs used in the CNFS, the model can simultaneously apply on data application with up to six real-valued targets. The MGGA-RLSE integrates the multi-group genetic algorithm (MGGA) and the well-known Recursive least squares estimator (RLSE), where the former is used to evolve the parameters of If-parts and the latter is used to update the parameters of T-S Then-parts. For the multi-group genetic algorithm, several populations are involved, each population with many individuals. Each individual is regarded as a potential solution to If-part pa-rameters in the model. Due to multiple populations, the MGGA is expected to search for the optimal solution with good efficacy. Four experiments for multi-target data prediction have been used to test the proposed approach.
[1] E. I. Altman, “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy”, The Journal of Finance, vol. 23, no. 4, pp. 589-609, September 1968.
[2] G. Armano, M.Marchesi, andA.Murru, “A hybrid genetic-neural architecture for stock indexes forecasting”, Information Sciences, vol. 170, no. 1, pp. 3-33, Feb.2005.
[3] M. Billah, S. Waheed, and A. Hanifa, “Predicting closing stock price using artificial neural network and adaptive neuro fuzzy inference system (ANFIS): the case of the dhaka stock exchange”, International Journal of Computer Applications, vol. 129, no. 11, pp. 975-8887, November 2015.
[4] W. H. Beaver, “Financial ratios as predictors of failure”, Journal of Accounting Research, vol. 4, pp. 71-111, 1966.
[5] J. R. Chang, L. Y. Wei, and C. H. Cheng, “A hybrid ANFIS model based on AR and volatility for TAIEX forecasting”, Applied Soft Computing, vol. 11, no. 1, pp. 1388-1395, January 2011.
[6] S. M. Chen, “Forecasting enrollments based on fuzzy time series”, Fuzzy Sets and Systems, vol. 81, no. 3, pp. 311-319, August 1996.
[7] M. Y. Chen and B. T. Chen, “A hybrid fuzzy time series model based on granular computing for stock price forecasting”, Information Sciences, vol. 294, pp. 227-241, February 2015.
[8] S. M. Chen and C. D. Chen, “TAIEX forecasting based on fuzzy time series and fuzzy variation groups”, IEEE Transactions on Fuzzy Systems., vol. 19, no. 1, pp. 1-12, Febuary 2011.
[9] C. H. Cheng, T.L. Chen, H. J. Teoh, and C. H. Chiang, “Fuzzy time-series based on adaptive expectation model for TAIEX forecasting”, Expert Systems with Applications, vol. 34, no. 2, pp. 1126-1132, February 2008.
[10] S. M. Chen and P. Y. Kao, “TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines”, Information Sciences, vol. 247, pp. 62-71, October 2013.
[11] S. M. Chen, G. M. T. Manalu, S. C. Shih, T. W.Sheu, andH.-C.Liu, “A new method for fuzzy forecasting based on two-factors high-order fuzzy-trend logical relationship groups and particle swarm optimization techniques”, 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2301-2306, Anchorage, AK, USA, October 2011.
[12] C. H. Cheng, L. Y. Wei, J. W. Liu, and T. L.Chen, “OWA-based ANFIS model for TAIEX forecasting”, Economic Modelling, vol. 30, pp. 442-448, January 2013.
[13] A. V. Devadoss and T. A. A. Ligori, “Stock prediction using artificial neural networks”, International Journal of Data Mining Techniques and Applications, vol. 2, pp. 283-291, December 2013.
[14] M. Dorigo, Optimization, Learning and Natural Algorithms, Politecnico di Milano, PhD thesis, 1992.
[15] A. Ghezelbash and F. Keynia, “Design and implementation of artificial neural network system for stock exchange prediction”, African Journal of Computing & ICT, vol. 7, no. 1, pp. 153-160, March 2014.
[16] M. Gupta, R. Ragade and R. Yager, Advances in fuzzy set theory and applications. ,Amsterdam: North-Holland, 1979.
[17] J. Holland, Adaptation in natural and artificial systems., Cambridge, Mass.: MIT Press, 1992.
[18] T. J. Hsieh, H. F. Hsiao, and W. C. Yeh, “Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm”, Applied Soft Computing, vol. 11, no. 2, pp. 2510-2525, March 2011.
[19] J. Jang, C. Sun and E. Mizutani, Neuro-fuzzy and soft computing., Upper Saddle River, N.J: Prentice Hall, 1997.
[20] J. Kennedy and R. Eberhart, “Particle swarm optimization”, Proceedings of ICNN'95 - International Conference on Neural Networks, vol. 4, pp 1942-1945, 1995.
[21] K. Kim, “Financial time series forecasting using support vector machines”, Neurocomputing, vol. 55, no. 1-2, pp. 307-319, September 2003.
[22] K. Kim and I. Han, “Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index”, Expert Systems with Applications, vol. 19, no. 2, pp. 125-132, August 2000.
[23] J. D. Lafferty, and L.Wasserman, “Challenges in statistical machine learning”, Statistica Sinica, vol. 16, pp. 370-322,2006.
[24] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1-13, January 1975.
[25] M. B. Patel and S. R. Yalamalle, “Stock price prediction using artificial neural network”, International Journal of Innovative Research in Science,Engineering and Technology (An ISO 3297: 2007 Certified Organization), vol. 3, no. 6, pp. 13755-13762, June 2014.
[26] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex fuzzy sets”, IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 171-186, April 2002.
[27] A. Rubio, José D. Bermúdez, and E. Vercher, “Improving stock index forecasts by using a new weighted fuzzy-trend time series method”, Expert Systems with Applications, vol. 76, pp. 12-20, June 2017.
[28] C. E.Shannon, “A mathematical theory of communication”, The Bell System Tech-nical Journal, vol. 27, pp. 379-423, July 1948.
[29] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control”, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116-132, January 1985.
[30] J. Ticknor, “A Bayesian regularized artificial neural network for stock market forecasting”, Expert Systems with Applications, vol. 40, no. 14, pp. 5501-5506, 2013.
[31] B. Üstün, W. J. Melssen and L. M. C. Buydens “Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel”, Chemometrics and Intelligent Laboratory Systems, vol. 81, no. 1, pp. 29-40, March 2006.
[32] L. Wang, X. Liu, and W. Pedrycz, “Effective intervals determined by information granules to improve forecasting in fuzzy time series”, Expert Systems with Applications, vol. 40, no. 14, pp. 5673-5679, October 2013.
[33] P. D. Yoo, M. Kim, and T. Jan, “Machine learning techniques and use of event information for stock market prediction: a survey and evaluation”, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 2, pp. 835-841, Vienna, Austria, November 2005.
[34] H. K. Yu, “Weighted fuzzy time series models for TAIEX forecasting”, Physica A: Statistical Mechanics and its Applications, vol. 349, no. 3-4, pp. 609-624, April 2005.
[35] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338-353, June 1965.
[36] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data: Opportunities and challenges”, Neurocomputing, vol. 237, pp. 350-361, May 2017.
[37] “Website of Yahoo Finance: The Goldman Sachs Group, Inc. (GS)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/GS/history?period1=1262534400&period2=1356883200&interval=1d&filter=history&frequency=1d.
[38] “Website of Yahoo Finance: Microsoft Corporation (MSFT)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/MSFT/history?period1=1262275200&period2=1356883200&interval=1d&filter=history&frequency=1d.
[39] “Website of Yahoo Finance: Oracle Corporation (ORCL)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/ORCL/history?period1=1262275200&period2=1356883200&interval=1d&filter=history&frequency=1d.
[40] “Website of Yahoo Finance: IBEX 35 (^IBEX)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EIBEX/history?period1=1356969600&period2=1451491200&interval=1d&filter=history&frequency=1d.
[41] “Website of Yahoo Finance: Nikkei 225 (^N225)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EN225/history?period1=1356969600&period2=1451491200&interval=1d&filter=history&frequency=1d.
[42] “Website of Yahoo Finance: TSEC weighted index (^TWII)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5ETWII/history?period1=1356969600&period2=1451491200&interval=1d&filter=history&frequency=1d.
[43] “Website of Yahoo Finance: Dow 30 (^DJI)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EDJI/history?period1=1356969600&period2=1451491200&interval=1d&filter=history&frequency=1d.
[44] “Website of Yahoo Finance: S&P 500 (^GSPC)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EGSPC/history?period1=1356969600&period2=1451491200&interval=1d&filter=history&frequency=1d.
[45] “Website of Yahoo Finance: TSEC weighted index (^TWII)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5ETWII/history?period1=1041350400&period2=1072800000&interval=1d&filter=history&frequency=1d.
[46] “Website of Yahoo Finance: Dow 30 (^DJI)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EDJI/history?period1=1041350400&period2=1072800000&interval=1d&filter=history&frequency=1d.
[47] “Website of Yahoo Finance: S&P 500 (^GSPC)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EGSPC/history?period1=1041350400&period2=1072800000&interval=1d&filter=history&frequency=1d.
[48] “Website of Yahoo Finance: Nasdaq (^IXIC)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EIXIC/history?period1=1041350400&period2=1072800000&interval=1d&filter=history&frequency=1d.
[49] “Website of Yahoo Finance: IBEX 35 (^IBEX)”, 2017. [Online]. Available: https://finance.yahoo.com/quote/%5EIBEX/history?period1=1041350400&period2=1072800000&interval=1d&filter=history&frequency=1d.
[50] “Website of Yahoo Finance: Nikkei 225 (^N225)”, [Online]. Available: https://finance.yahoo.com/quote/%5EN225/history?period1=1041350400&period2=1072800000&interval=1d&filter=history&frequency=1d.
[51] 李俊賢, “Multi-target feature selection”, 研究生訓練手稿, 國立中央大學資訊管理所, 2015-2017。(未發表)