跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡宜蒨
I-Chien Tsai
論文名稱: 適用於無線感測網路的可適性樹狀資料收集
Adaptive Tree-based Data Collection for Wireless Sensor Network
指導教授: 孫敏德
Ming-Te Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 37
中文關鍵詞: 資料收集樹無線感測網路
外文關鍵詞: data collection tree, wireless sensor network
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用可移動的資料收集器在無線感測網路中收集資料是一個重要的研究議題。過去的作法如果不是會消耗太多的能量,就是資料傳輸成功率很低。在這篇論文中,我們針對如何在無線感測網路中,利用可移動的資料收集器以收集資料提出了兩個新的方法。第一種方法是Partial Adaptive Tree (PAT),首先我們在無線感測網路中建立資料收集樹。當可移動的資料收集器從一個地方移動到另一個地方時,我們提出的方法可以減少資料收集樹必須更新的部分。第一種方法是Partial Adaptive Tree with Path Pruning (PAT-PP),將路徑修剪的觀念引入PAT。模擬結果顯示,我們提出的這兩種方法都顯著地藉由降低更新的花費而減少能源消耗。此外,不論節點密度高低或是資料收集器的速度快慢,PAT-PP都可以保持更高的資料傳輸率。


    Data collection in wireless sensor network with a mobile sink is an important research issue. The past approaches are that either consume too much energy or produce low delivery rate. In this thesis, we propose two novel approaches to collect data for wireless sensor networks in the presence of a mobile sink. The first approach, called Partial Adaptive Tree (PAT), reduces the update portion of the tree when the mobile sink moves from one place to another. The second approach, called Partial Adaptive Tree with Path Pruning (PAT-PP), applies the concept of path pruning on top of PAT. The simulation results show that both proposed approaches reduce the energy consumption significantly. In addition, PAT-PP is able to maintain a high delivery rate regardless of the node density and the speed of the mobile sink.

    1 Introduction 1 2 Literature Review 3 2.1 Transmission with Aggregation or without Aggregation . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Networks structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Preliminary 7 3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 ART Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Path Pruning Protocol . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 System Model 14 4.1 Network Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Sink Mobility Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 Simulation 19 5.1 Simulation Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.1 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.2 Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.3 Delivery Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 iv 5.2.4 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 Conclusion 32 References 33

    [1] The network simulator - ns-2 http://www.isi.edu/nsnam/ns/.
    [2] C. Bettstetter, G. Resta, and P. Santi. The node distribution of the random waypoint
    mobility model for wireless ad hoc networks. Mobile Computing, IEEE Transactions
    on, 2(3):257 – 269, july-sept. 2003.
    [3] Geoffrey Werner Challen, Jason Waterman, and Matt Welsh. Idea: integrated distributed
    energy awareness for wireless sensor networks. In Proceedings of the 8th
    international conference on Mobile systems, applications, and services, MobiSys ’10,
    pages 35–48, New York, NY, USA, 2010. ACM.
    [4] Ioannis Chatzigiannakis, Athanasios Kinalis, and Sotiris Nikoletseas. Efficient data
    propagation strategies in wireless sensor networks using a single mobile sink. Comput.
    Commun., 31(1), March 2008.
    [5] Zhao Cheng, M. Perillo, and W.B. Heinzelman. General network lifetime and cost
    models for evaluating sensor network deployment strategies. Mobile Computing,
    IEEE Transactions on, 7(4):484 –497, april 2008.
    [6] SeongHwan Cho and A.P. Chandrakasan. Energy efficient protocols for low duty
    cycle wireless microsensor networks. In Acoustics, Speech, and Signal Processing,
    2001. Proceedings. (ICASSP ''01). 2001 IEEE International Conference on, volume 4,
    pages 2041 –2044 vol.4, 2001.
    [7] D. England, Bharadwaj Veeravalli, and J.B. Weissman. A robust spanning tree
    topology for data collection and dissemination in distributed environments. Parallel
    and Distributed Systems, IEEE Transactions on, 18(5):608 –620, may 2007.
    33
    [8] H. Fariborzi and M. Moghavvemi. Eamtr: energy aware multi-tree routing for wireless
    sensor networks. Communications, IET, 3(5):733 –739, may 2009.
    [9] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis.
    Collection tree protocol. In Proceedings of the 7th ACM Conference on Embedded
    Networked Sensor Systems, SenSys ’09, pages 1–14, New York, NY, USA, 2009. ACM.
    [10] Liu Gui-kai, Shan Chun-li, Wei Gang, and Wang Hong-jiang. Subarea tree routing in
    multi-hop wireless ad hoc networks. In Communication Systems, 2008. ICCS 2008.
    11th IEEE Singapore International Conference on, pages 1695 –1699, nov. 2008.
    [11] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan. An application-specific
    protocol architecture for wireless microsensor networks. Wireless Communications,
    IEEE Transactions on, 1(4):660 – 670, oct 2002.
    [12] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
    diffusion for wireless sensor networking. Networking, IEEE/ACM Transactions on,
    11(1):2 – 16, feb 2003.
    [13] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile
    networking for ¨smart dust¨ . In Proceedings of the 5th annual ACM/IEEE international
    conference on Mobile computing and networking, MobiCom ’99, pages 271–278, New
    York, NY, USA, 1999. ACM.
    [14] K.-W. Kai-Wei Fan, S. Liu, and P. Sinha. Structure-free data aggregation in sensor
    networks. Mobile Computing, IEEE Transactions on, 6(8):929 –942, aug. 2007.
    [15] Hwang Kwang-il and Eom Doo-seop. Adaptive sink mobility management scheme
    for wireless sensor networks. 2006.
    34
    [16] Euisin Lee, Soochang Park, Fucai Yu, Younghwan Choi, Min-Sook Jin, and Sang-Ha
    Kim. A predictable mobility-based data dissemination protocol for wireless sensor
    networks. Advanced Information Networking and Applications, International Con-
    ference on, 0:741–747, 2008.
    [17] Zhenjiang Li, Mo Li, Jiliang Wang, and Zhichao Cao. Ubiquitous data collection
    for mobile users in wireless sensor networks. In INFOCOM, pages 2246–2254. IEEE,
    2011.
    [18] Hai Liu, Xiaohua Jia, Peng-Jun Wan, Chih-Wei Yi, S. Kami Makki, and Niki Pissinou.
    Maximizing lifetime of sensor surveillance systems. IEEE/ACM Trans. Netw.,
    15(2):334–345, April 2007.
    [19] Junchao Ma, Wei Lou, YanweiWu, Xiang-Yang Li, and Guihai Chen. Energy efficient
    tdma sleep scheduling in wireless sensor networks. In INFOCOM 2009, IEEE, pages
    630 –638, april 2009.
    [20] Xiaoli Ma, Min-Te Sun, Gang Zhao, and Xiangqian Liu. An efficient path pruning
    algorithm for geographical routing in wireless networks. Vehicular Technology, IEEE
    Transactions on, 57(4):2474 –2488, july 2008.
    [21] Wanzhi Qiu, Efstratios Skafidas, and Peng Hao. Enhanced tree routing for wireless
    sensor networks. Ad Hoc Netw., 7(3):638–650, May 2009.
    [22] Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, and Konstantinos
    Psounis. Interference-aware fair rate control in wireless sensor networks. SIGCOMM
    Comput. Commun. Rev., 36(4):63–74, August 2006.
    35
    [23] S. Sharafkandi, D.H.C. Du, and A. Razavi. A distributed and energy efficient algorithm
    for data collection in sensor networks. In Parallel Processing Workshops
    (ICPPW), 2010 39th International Conference on, pages 571 –580, sept. 2010.
    [24] H.O. Tan, I. Korpeoglu, and I. Stojmenovic. Computing localized power-efficient
    data aggregation trees for sensor networks. Parallel and Distributed Systems, IEEE
    Transactions on, 22(3):489 –500, march 2011.
    [25] BaobingWang and Xiaohua Jia. Reducing data aggregation latency by using partially
    overlapped channels in sensor networks. In Global Telecommunications Conference,
    2009. GLOBECOM 2009. IEEE, pages 1 –6, 30 2009-dec. 4 2009.
    [26] Chen Xiao-Tian, Zhang Shun-Yi, Wang Pan, and Zhang Ming. An novel energyefficient
    redundant routing tree algorithm for wireless sensor networks. In Wireless
    Communications, Networking and Mobile Computing, 2009. WiCom ''09. 5th Inter-
    national Conference on, pages 1 –4, sept. 2009.
    [27] Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang. A two-tier data
    dissemination model for large-scale wireless sensor networks. In Proceedings of the
    8th annual international conference on Mobile computing and networking, MobiCom
    ’02, pages 148–159, New York, NY, USA, 2002. ACM.
    [28] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and energy aware
    routing : a recursive data dissemination protocol for wireless sensor networks. Energy,
    463(Report UCLA/CSD-TR-01-0023):2–3, 2001.
    [29] Yao Zhao, XinWang, Jin Zhao, and A.O. Lim. Data collection for distributed surveillance
    sensor networks in disaster-hit regions. In Collaborative Computing: Network-
    36
    ing, Applications and Worksharing (CollaborateCom), 2010 6th International Con-
    ference on, pages 1 –9, oct. 2010.
    [30] Zehua Zhou, Xiaojing Xiang, and Xin Wang. An energy-efficient data-dissemination
    protocol inwireless sensor networks. A World of Wireless, Mobile and Multimedia
    Networks, International Symposium on, 0:13–22, 2006.

    QR CODE
    :::