| 研究生: |
張議仁 Yi-jen Chang |
|---|---|
| 論文名稱: |
新角度配對法之二維訊號方位估計 Two-Dimensional DOA Estimation with a New Angles Pairing Method |
| 指導教授: |
張大中
Dah-chung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 陣列訊號處理 、關聯方法 、到達方向估計 |
| 外文關鍵詞: | array signal processing, correlation methods, direction-of-arrival estimation |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一種新穎的利用兩個均勻線性陣列(uniform linear arrays,ULAs)估計二維(two-dimensional,2-D)到達的角度(direction-of-arrival,DOA)的仰角角度(elevation angles)與方位角角度(azimuth angles)的配對方法,本篇論文提出利用最大概似估計(Maximum Likehood Estimation Pairing,MLP)的方法來配對入射到每一個均勻線性陣列的訊號,使得在估計多訊號源的到達角度時可以自動地配對仰角角度與方位角角度,在結果的分析與比較中,本篇論文所提出的方法有較過去的方法在較小的角度間隔與較多的訊號源個數能夠有比較好的性能,且與過去不需要額外加入配對演算法就能自動地配對仰角角度與方位角角度的演算法能夠有比較好的角度精準度與較低的計算複雜度。
A novel method is presented in this paper for pair matching of
elevation and azimuth angles in a two-dimensional
direction-of-arrival estimation problem, employing the antenna
configuration of two uniform linear arrays. The proposed method
exploits maximum likelihood estimation to pair two individual DOA
angles in a 3-D space from the received signals impinging on each ULA,
and consequently, multiple sources' DOAs can be identified
automatically. Simulation results show that the proposed method has
better performance in case of small angular separation among multiple
signal sources compared to the conventional methods.The proposed
method also has less computational complexity and higher estimation
accuracy than the previously published works.
參 考 文 獻
[1] R. O. Schmidt, “Multiple emitter location and signal parameter esti-
mation,”IEEE Trans.Antennas and Propagation, vol. 34, no. 3, pp.
276 –280, Mar 1986.
[2] F. Yan, “Low-complexity doa estimation based on compressed MU-
SIC and its performance analysis,”IEEE Trans.Signal Processing,
vol. 61, no. 8, pp. 1915–1930, April 2013.
[3] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters
via rotational invariance techniques,”IEEE Trans.Acoustics, Speech
and Signal Processing, vol. 37, no. 7, pp. 984 –995, Jul 1989.
[4] A. Swindlehurst, “Azimuth/elevation direction finding using reg-
ular array geometries,”IEEE Trans.Aerospace and Electronic Sys-
tems, vol. 29, no. 1, pp. 145 –156, Jan 1993.
[5] S. Rouquette, “Estimation of frequencies and damping factors by
two-dimensional esprit type methods,”Signal Processing, IEEE,
vol. 49, pp. 237 –245, Jan 2001.
[6] M. Haardt, “Unitary ESPRIT: how to obtain increased estimation
accuracy with a reduced computational burden,”Signal Processing,
IEEE Transactions, vol. 43, no. 5, pp. 1232 –1242, May 1995.
[7] N. Tayem and H. Kwon, “L-shape 2-dimensional arrival angle esti-
mation with propagator method,”IEEE Trans.Antennas and Propa-
gation, vol. 53, no. 5, pp. 1622 –1630, May 2005.
[8] J. Liang, “Joint elevation and azimuth direction finding using
L-shaped array,”IEEE Trans.Antennas and Propagation, vol. 58,
no. 6, pp. 2136 –2141, June 2010.
[9] T. Xia, “Decoupled estimation of 2-D angles of arrival using two
parallel uniform linear arrays,”IEEE Trans.Acoustics, Speech and
Signal ProcessingAntennas and Propagation, vol. 55, no. 9, pp.
2627 –2632, Sept 2007.
90[10] T. H. Liu and J. Mendel, “Azimuth and elevation direction find-
ing using arbitrary array geometries,”IEEE Trans.Signal Process-
ing, vol. 46, no. 7, pp. 2061 –2065, Jul 1998.
[11] S. Kikuchi, “Pair-matching method for estimating 2-D angle of ar-
rival with a cross-correlation matrix,”IEEE Trans.Acoustics, Speech
and Signal ProcessingAntennas and Wireless Propagation Letters,
vol. 5, no. 1, pp. 35 –40, Dec 2006.
[12] L. Harry, Detection,Estimation,and Modulation Theory. Wiley,
2013.
[13] R. O. Schmidt, A signal subspace approach to multiple emitter lo-
cation and spectral estimation. Ann Arbor, Mich, 1982.
[14] S.Marcos, “The propagator method for source bearing estima-
tion,”Elsevier Trans.Signal Processing, vol. 42, no. 5, pp. 121–138,
June 1994.
[15] M. Zoltowski, “Closed-form 2-d angle estimation with rectangular
arrays in element space or beamspace via unitary ESPRIT,”IEEE
Trans.Signal Processing, vol. 44, no. 2, pp. 316 –328, Feb 1996.
[16] J. Ramos, “FCA-ESPRIT: a closed-form 2-D angle estimation
algorithm for filled circular arrays with arbitrary sampling lat-
tices,”IEEE Trans.Signal Processing, vol. 47, no. 1, pp. 213 –217,
Jan 1999.
[17] Y. Hua, “An L-shaped array for estimating 2-D directions of wave
arrival,”IEEE Trans.Antennas and Propagation, vol. 39, no. 2, pp.
143 –146, Feb. 1991.
[18] H. Minghao, “UCA-ESPRIT algorithm for 2-D angle estimation,”in
Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th Inter-
national Conference, vol. 1, pp. 437 –440, Aug 2000.
[19] Y. Hua, “L-shaped array for estimating 2-D directions of wave ar-
rival,”Circuits and Systems, 1989, Proceedings of the 32nd Midwest
Symposium, vol. 1, pp. 390 –393, Aug 1989.
91[20] S.Marcos, “Calibration of a distorted towed array using a propa-
gation operator,”J. Acoust. Soc. Am, vol. 93, pp. 1987–1994, Apr
1993.
[21] J. Chen, “2-D DOA estimation by MEMP based on L-shape ar-
ray,”in Signal Processing Proceedings, 2006 8th International Con-
ference, vol. 1, Feb. 2006.
[22] P. Stoica, “Maximum likelihood methods for direction-of-arrival
estimation,”IEEE Trans.Acoustics, Speech and Signal Processing,
vol. 38, no. 7, pp. 1132 –1143, Jul 2002.
[23] Y. Wei, “Pair-matching method by signal covariance matrices for
2D-doa estimation,”vol. 13, pp. 1199 –1202, June 2014.