| 研究生: |
潘文勤 Wen-Chin Pan |
|---|---|
| 論文名稱: |
平板式輻射狀熱管之研製與性能評估 Fabrication and Performance Evaluation of Flat radial Heat Pipe |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 輻射狀熱管 、熱阻抗 、毛細組織 |
| 外文關鍵詞: | Thermal Resistance, Radial Heat Pipe, Capillary Structures |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前隨著電子元件均朝向輕、薄、短、小的方向發展,造成電路積體密度增高,相對也使得熱通量更為上升,因此散熱問題遂成為電子產品設計的重點之一,熱管是一種可有效解決此問題之技術。熱管為一種具有高導熱元件,其乃是藉由熱管內流體的兩相轉換去達到熱擴散的效果,進而降低熱源集中的問題。但目前市售的圓柱狀熱管對於平面熱源會遇到接觸上的問題,而平板式的優點就是可以降低與熱源的接觸熱阻,而得到良好的熱傳效果。
本實驗製作一平板式輻射狀熱管,使用紅銅為熱管主體材質,其熱管上蓋分別為紅銅與壓克力,內部的毛細組織為多孔性陶瓷,使用去離子水做為工作液體,加熱功率2W~70W之間不等,並藉由可視化來觀察熱管內部之作動行為。實驗結果顯示,在熱管上蓋為紅銅材質時,充填30%較0%及15%之性能佳,而充填60%於40W之後開始變差。熱管充填30%時,於垂直擺放時又比水平擺放時有較低的蒸發端底部溫度及總熱阻抗;在壓克力為熱管上蓋時,其熱阻抗表現比紅銅上蓋時及垂直擺放時來得更好,而在毛細增厚測試下,性能表現於1.5mm厚度時較3mm厚度佳。
Heat pipes have been applied to cool high power density electronic devices. The main characteristic of two-phase changed of heat pipe can obtain reducing operation temperature of electronic devices, and achieving heat spreading effect. In this study, flat heat pipes instead of conventional cylindrical heat pipe were investigated experimentally. The cylinder heat pipe is not a good choice because the contact between heat pipe and flat heat source is not compact. Thus flat heat pipe is more suitable for improving.
In this thesis, we study a flat radial heat pipes with porous ceramics wick structure and copper and acrylics top cover. Those heat pipes can operate at input power 2-to-70W. Work fluid charging fraction from 0% to 60%. The performance of flat radial heat pipe and permeability are also investigated experimentally in this study. For the measurement of performances with copper top cover, charging ratio at 30% is better than 0% and 15% with heat input increasing. However, the charging ratio becomes 60%, the thermal dispassion efficiency decays at input power 40W. In addition, the charging ratio at 30% has a lower operation temperature and thermal resistance under vertical orientation. The different material test of top cover, we found that the thermal resistance of heat pipe has more significant reduction on acrylics material than copper material. However, the thickness of wick structure increased from 1.5mm to 3mm, the thermal dispassion efficiency is not improved significantly.
1. Toyoda Gosei Corp. General LED catalogue, 2000.
2. Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods”, Applied Physics Letters, 86 (2005) 031907.
3. Philips Lumileds datasheet RD25.
4. R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, “Thermal performance challenges form silicon to systems”, Intel Technology Journal Q3, 2000.
5. S. W. Kang, S. H. Tsai, and M. H. Ko, “Metallic micro heat pipe heat spreader fabrication”, Applied Thermal Engineering, 24 (2003) 299-309.
6. Yeh-Chiang Technology Corp. http://www.yctc.com.tw
7. M. P. Mughal and O. A. Plumb, “An experimental study of boiling on a wicked surface”, International Journal of Heat and Mass Transfer, 95(1996) 771-777.
8. I. Yusuf, A. Watew, and H. Ekhiassi, “Integrated heat sink-heat pipe thermal cooling device”, 7th Intersociety Conference on Thermal and Thermo Mechanical Phenomena in Electronic System Itherm 2000, 2 (2000) 27-30.
9. 陳泓志, “輻射狀微流道熱管之研製”, 淡江大學機械工程學系碩士論文, 2001.
10. S. W. Kang, S. H. Tsai, and H. C. Chen, “Fabrication and test of radial grooves micro heat pipes”, Applied Thermal Engineering, 22 (2002) 1559-1568.
11. H. T. Chien, D. S. Lee, P. P. Ding, S. L. Chiu, and P. H. Chen, “Disk-shaped miniature heat pipe (DMHP) with radiating micro grooves for a TO can laser diode package”, IEEE Transactions on Components and Packaging Technology, 26 (2003) 569-574.
12. G. P. Peterson, “An introduction to heat pipe”, ISBN0-471-30512-X, John Wiley & Sons, Inc, 1994.
13. F. W. Gay, “Heat transfer means”, U.S. Patent 1,725,906, 1929.
14. R. S. Gaugler, “Heat transfer devices”, U. S. Patent 2,350,348, 1944.
15. G. M. Grover, T. P. Cotter, and G. F. Erikson, “Structures of very high thermal conductivity”, Journal of Applied Physics, 35 (1964) 1190-1191.
16. D. Chisholm, “Heat pipe”, Birmingham University Chemical Engineer, 25 (1974) 45-50.
17. T. P. Cotter, “Principles and prospects for micro heat pipes”, Tsukuba, Ibaraki, Japan, 14 (1984) 14-18.
18. S. W. Kang and D. Huang, “Fabrication of star grooves and rhombus grooves micro heat pipe”, Journal of Micromechanics and Microengineering, 12 (2002) 525-531.
19. M. L. Berre, S. Launay, V. Sartre, and M. Lallenmand, “Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics”, Journal of Micromechanics and Microengineering, 13 (2003) 436-441.
20. S. Launay, V. Sartre, and M. Lallemand, “Experimental study on silicon micro-heat pipe arrays”, Applied Thermal Engineering, 24 (2004) 233-243.
21. C. Y. Liu, K. C. Leong, Y. W. Wong, and F. L. Tan, “Performance study of flat plate heat pipe”, Proceedings of the International Conference on Energy and Environment, Shanghai, 17 (1995) 512-518.
22. Y. Cao and M. Gao, “Wickless network heat pipes for high heat flux spreading applications”, International Journal of Heat and Mass Transfer, 45 (2002) 2539-2547.
23. Y. Xuan, Y. Hong, and Q. Li, “Investigation behaviors of flat plate heat pipe”, Experimental Thermal and Fluid Science, 28 (2004) 249-255.
24. 李昌駱, “置中熱源對熱管散熱增益之研究”, 國立成功大學工程科學系碩士論文, 2004
25. L. L. Vasiliev, “Heat pipes in modern heat exchangers”, Applied Thermal Engineering, 25 (2005) 1-19.
26. A. Faghri, “Heat pipes science and technology”, Taylor and Francis, Washington, 1995.
27. 依日光. “熱管技術理論實務”, 復漢出版社, 1986.
28. H. B. Ma, G. P. Peterson, and X. J. Lu, “The Influence of vapor-liquid interactions on the liquid pressure drop in triangular microgrooves”, Int. J. Heat mass Transfer, 37 (1994) 2211-2219.
29. U. Vadakkan, M. G. Chrysler, J. Maveety, and M. Tirumala “A novel carbon nano tube based wick structure for heat pipes/vapor chamber”, 23th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Semi-Therm Proceedings, (2007) 102-104.
30. Z. Yaping, “Experimental research on heat transfer performance of novel radial flat heat pipe”, Hsi-An Chiao Tung Ta Hsueh/Journal of Xi''an Jiaotong University, 41 (2007) 780-783.
31. Y. Wang and G. P. Peterson, “ Investigation of a novel flat heat pipe”, Journal of Heat Transfer, 127 (2005) 165-170.