| 研究生: |
戴廷翰 Ting-Han Tai |
|---|---|
| 論文名稱: |
氫能利用、觸媒反應與熱電產生器實作與模擬 Experimental and Numerical Studies on Hydrogen Usage, Catalytic Reaction and Thermoelectric Power Generator |
| 指導教授: |
施聖洋
Shenq-yang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 熱電產生 、電能量測 、數值模擬 、觸媒反應 、熱再循環 、氫能利用 |
| 外文關鍵詞: | hydrogen usage, heat-recirculating, catalytic reaction and thermoelectric generator, numerical simulation |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以氫為燃料,結合熱再循環、觸媒反應、及熱電轉換技術,實作一潔淨可攜式熱電產生器。本系統包含三個核心組件:(1)瑞士捲熱源產生器(Swiss-roll Catalytic Heat Source, SRCHS),(2)熱電模組(Thermoelectric Module, TEM),(3)熱沉裝置(Heat Sink, HSI),依序以三明治堆疊方式組成。SRCHS由類陶瓷板材(B85)所製成,厚度僅10 mm,而面積為50 mm × 50 mm,並以CNC銑床加工流道截面積為4 mm × 4 mm的1.5圈瑞士捲式流道,於流道不同處置放不同長度(5 mm ~ 10 mm)的蜂巢式白金觸媒。利用預混氫氣/空氣與白金觸媒表面化學反應所產生的熱釋放,加上B85板材極低之熱傳導係數及瑞士捲流道的熱再循環特性,以及高熱傳導係數的銅製上板,可產生均勻熱源供TEM熱端使用,並以水冷式HSI置於TEM冷端,提供一可控制之溫差範圍(50℃ ~ 250℃),並找出優化之壓力負載條件,使TEM產電。有關實驗量測方面,針對觸媒長度與分段擺放位置與不同氫體積濃度([H2] = 8 ~ 12%)及以流道寬度定義之雷諾數(Re = Vf D/? = 500 ~ 2000;Vf為燃料流速,D為流道寬度而?為燃料運動黏滯係數)來探討流道內溫度分佈,利用10支K型熱電偶量測流道內部溫度,及3支K型貼片式熱電偶量測銅製上板表面溫度(即TEM熱端溫度),找出適當的溫度控制範圍,優化本系統之輸出功率。在數值模擬方面,以CFD-RC軟體建立三維模式的計算模擬,結合13步驟白金觸媒與氫氣/空氣的化學表面反應機制,並考慮邊界熱損失來預測模擬SRCHS的化學反應流特性,模擬結果與實驗結果一致。本研究也模擬TEM的熱場與電場的轉換效應,考慮TEM的有效接觸面積與適當的Seebeck係數,來分析TEM之開迴路電壓(OCV)。由模擬與實驗比對的結果,我們找出此系統的較佳操作條件,在[H2] = 12%、Re = 1500、及兩段各長5 mm之分段觸媒位置,控制TEM在溫差為200℃及200 psi的壓力負載之下,本系統可輸出功率密度為520 mW/cm2。此一創新可攜式電源供應器,為一潔淨氫能利用技術,可供許多小型電子產品使用,例如照明燈具、筆記型電腦、或充電系統所使用。
This thesis applies hydrogen as a fuel and combines three clean energy-saving technologies, including heat-recirculating, catalytic reaction and thermoelectric conversion, to devise a clean portable thermoelectric generator (TEG). This TEG system consists of three key parts: (1) A Swiss-roll catalytic heat source (SRCHS), (2) a thermoelectric module (TEM) and (3) a heat sink (HSI), in which the TEM is sandwiched between the SRCHS and the HSI. The SRCHS made of B85 material with properties similar to that of the ceramic material is manufactured by a CNC machine to have a 1.5-turn Swiss-roll channel with a cross-sectional area of 4 mm × 4 mm. The cross-sectional area of SRCHS is 50 mm × 50 mm with a height of 10 mm, in which various lengths (5 ~ 10 mm) of honeycomb platinum catalysts located inside the SRCHS`s channel are need to generate heat from the surface reaction between premixed H2/air mixtures and Pt catalyst. Because of very low heat conductivity of B85 material together with the Swiss-roll heat recirculation, the SRCHS features as a uniform heat source for the TEM provided that a copper plate with very high heat conductivity is used. In addition, we apply a water cooling HSI, so that the wanted temperature range (50 ~ 250℃) across the TEM can be stably controlled. For temperature measurements, ten K-type thermocouples positioned at different locations along the SRCHS flow channel as well as three K-type thermocouple films positioned on the upper copper plate surface are applied to measure temperature distributions of the SRCHS. Various hydrogen concentrations in volume percentage ([H2] = 8 ~ 12%) are used with a wide range of the flow Reynolds number (Re = VfD/?) varying from 500 to 2000, where Vf is the mean velocity of reactants, D = 4 mm is the width of the flow channel, and ? is the kinematic viscosity of H2/air mixtures. This study also measures emissions of [H2], [O2], and [NOx] using the gas analyzer. For numerical simulations, a 3D reacting model is established using CFD-RC packages combined with a 13-steps platinum surface reaction mechanism with the consideration of heat losses to predict chemical reacting flows in the SRCHS. Moreover, efforts are made to simulate heat and electric fields of the Seebeck effect for the TEM by using the effective contact area and the proper Seebeck coefficient of the TEM. Thus, the relation between the open circuit voltage and the temperature gradient can be simulated and obtained. Numerical results are found to be in reasonably good agreement with experimental data. Finally, when using two segments of catalysts each having 5 mm long placed inside the channel of the SRCHS with the water cooling HSI, the TEG system has the highest power density up to 520 mW/cm2, where [H2] = 12%, Re = 1500, and ΔT ~ 200℃ between the cold and hot sides of TEM with a mechanical load of 200 psi. This novel portable TEG system is a pollution-free power generator which is useful for many small electric devices.
[1] Turner, J. A., “Toward a Hydrogen Economy”, Science, 305, 957, 2004.
[2] Maruta, K. and Takeda, K., “Catalytic Combustion in Microchannel for MEMS Power Generation”, The Third Asia-Pacific Conference on Combustion, Seoul, Korea, June 24-27, 2001.
[3] Lloyd, S. A. and Weinberg, F. J., “A burner for mixtures of very low heat content”, Nature, 251, 47-49, 1974.
[4] Kuo, C. H., Ronney, P. D., “Numerical modeling of non-adiabatic heat-recirculating combustors”, Proceedings of the Combustion Institute, 31, 3277-3284, 2007.
[5] Schaevitz, S. B., Franz, A. J., Jensen, K. F. and Schmidt, M. A., “A combustion-based mems thermoelectric power generator”, The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, June, 2001.
[6] 楊俊傑,「氫能利用:過焓觸媒熱電產生器之實作研究」,國立中央大學,碩士論文,民國94年。
[7] 鄭偉隆,「低氮氧化物燃燒器實驗和數值研究及其應用」,國立中央大學,碩士論文,民國95年。
[8] 陳致銘,「氫能利用:新型可攜式潔淨電源產生器實作與數值分析」,國立中央大學,碩士論文,民國96 年。
[9] 張瑞文,「新潔淨氫能觸媒熱電產生器:製造、量測與模擬」,國立中央大學,碩士論文,民國97 年。
[10] Lloyd, S. A. and Weinberg, F.J., “Limits to energy release and utilization from chemical fuels”, Nature, 257, 367-370, 1975.
[11] Vican, J., Gajdeczko, B. F., Dryer, F. L., Milius, D. L., Aksay, I. A. and Yetter, R. A., “Development of a microreactor as a thermal source for microelectromechanical systems power generation”, Proceedings of the Combustion Institute, 29, 909-916, 2002.
[12] Ronney, P. D., “Analysis of non-adiabatic heat-recirculating combustors”, Combustion and Flame, 135, 421-439, 2003.
[13] Ahn, J., Eastwood, C., Sitzki, L., Ronney, P. D., “Gas-phase and catalytic combustion in heat-recirculating burners”, Proceedings of the Combustion Institute, 30, 2463-2472, 2005.
[14] Kuo, C. H., Ronney, P. D., “Numerical modeling of non-adiabatic heat-recirculating combustors”, Proceedings of the Combustion Institute, 31, 3277-3284, 2007.
[15] Kim, N. I., Kato, S., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T. and Maruta, K., “Flame stabilization and emission of small Swiss-roll combustors as heaters”, Combustion and Flame, 141, 229-240, 2005.
[16] Kim,N. I., Aizumi, S., Yokomori, T., Kato, S., Fujimori, T., Maruta, K., “Development and scale effects of small Swiss-roll combustors”, Proceedings of the Combustion Institute, 31, 3243-3250, 2007.
[17] Federici, J. A., Wetzel, E. D., Geil, B. R., Vlachos, D. G., “Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study”, Proceedings of the Combustion Institute, 32, 3011-3018, 2009.
[18] Wang, L., Tran, T. P., Vo, D. V., Sakurai, M., Kameyama, H., “Design of novel Pt-structured catalyst on anodic aluminum support for VOC’s catalytic combustion”, Applied Catalysis A: General, 350, 150-156, 2008.
[19] Maruta, K., Takeda, K., Ahn, J.,Borer, K., Sitzki, L., Ronney, P. D. and Deutschmann, O., “Extinction limits of catalytic combustion in microchannels”, Proceedings of the Combustion Institute, 29, 957-963, 2002.
[20] Chao, Y. I., Chen, G. B., Hsu, H. W., Hsu, J. R., “Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor”, Applied Catalysis A: General, 261, 99-107, 2004.
[21] Chen, G. B., Chen, C. P., Wu, C.Y., Chao, Y. C., “Effects of catalytic walls on hydrogen/air combustion inside a micro-tube”, Applied Catalysis A: General, 332, 89-97, 2007.
[22] Chen, G. B., Chao, Y. C., Chen, C. P., “Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation”, International Journal of Hydrogen Energy, 33, 2586-2595, 2008.
[23] Deutschmann, O., Schmidt, R., Behrendt, F. and Warnatz, J., “Numerical modeling of catalytic ignition”, Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, pp. 1747-1754, 1996.
[24] Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H., Dibble, R. W., “Hydrogen assisted catalytic combustion of methane on platinum”, Catalysis Today, 59, 141-150, 2000.
[25] Norton, D. G., Vlachos, D. G., “Combustion characteristics and fame stability at the microscale: a CFD study of premixed methane/air mixtures”, Chemical Engineering Science, 58, 4871-4882, 2003.
[26] Hua, J., Wu, M., Kumar, K., “Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers. Part I: Fundamental study”, Chemical Engineering Science, 60, 3497-3506, 2005.
[27] Hua, J., Wu, M., Kumar, K., “Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers Part II: CFD analysis for a micro-combustor”, Chemical Engineering Science, 60, 3507-3515, 2005.
[28] Chen, C. P., Chao, Y. C., Wu, C. Y., Lee, J. C., “Development of a catalytic hydrogen micro-propulsion system”, Combust. Sci. and Tech., 178, 2039-2060, 2006.
[29] Boyarko, G. A., Sung, C. J., Schneider, S. J., “Catalyzed combustion of hydrogen–oxygen in platinum tubes for micro-propulsion applications”, Proceedings of the Combustion Institute, 30, 2481-2488, 2005.
[30] Veser, G., “Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor”, Chemical Engineering Science, 56, 1265-1273, 2001.
[31] Norton, D. G., Wetzel, E. D., Vlachos, D. G., “Fabrication of Single-Channel Catalytic Microburners: Effect of Confinement on the Oxidation of Hydrogen/Air Mixtures”, Ind. Eng. Chem. Res., 43, 4833-4840, 2004.
[32] Norton, D. G.and Vlachos, D. G., “Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners”, Proceedings of the Combustion Institute, 30, 2473-2480, 2005.
[33] Wierzba, I., Depiak, A., “Catalyticoxidation of lean homogeneous mixtures of hydrogen/hydrogen–methane in air”, International Journal of Hydrogen Energy, 29, 1303-1307, 2004.
[34] Choi, W., Kwon, S. and Shin, H. D., “Combustion characteristics of hydrogen–air premixed gas in a sub-millimeter scale catalytic combustor”, International Journal of Hydrogen Energy, 33, 2400-2408, 2008.
[35] Rowe, D. M., CRC handbook of thermoelectrics, CRC Press LLC, Boca Raton, FL, 1995.
[36] Weinberg, F. J., Rowe, D.M., Min, G. and Ronney, P. D., “On thermoelectric power conversion from heat recirculating combustion systems”, Proceedings of the Combustion Institute, 29, 941-947, 2002.
[37] Weinberg, F., “Optimising heat recirculating combustion systems for thermoelectric converters”, Combustion and Flame, 138, 401-403, 2004.
[38] Min, G. and Rowe, D. M., ““Symbioc” application of thermoelectric conversion for fluid preheating/power generation”, Energy Conversion and Managent, 43, 221-228, 2002.
[39] Rowe, D. M. and Min, G., “Design theory of thermoelectric modules for electrical power generation”, IEE Proc.-Sci. Meas. Technol., 143, 351-356, 1996.
[40] Rowe, D. M. and Min, G., “Evaluation of thermoelectric modules for power generation”, Journal of Power Sources, 73, 193-198, 1998.
[41] Esarte, J., Min, G. and Rowe, D. M., “Modelling heat exchangers for thermoelectric generators”, Journal of Power Sources, 93, 72-76, 2001.
[42] Min, G. and Rowe, D. M., “Conversion Efficiency of Thermoelectric Combustion Systems”, IEEE Transaction on Energy Conversion, 22, 528-534, 2007.
[43] Federici, J. A., Norton, D. G., Bruggemann, T., Voit, K. W., Wetzel,E. D.,Vlachos, D.G., “Catalytic microcombustors with integrated thermoelectric elements for portable power production”, Journal of Power Sources, 161, 1469-1478, 2006.
[44] Karim, A. M., Federici, J. A., Vlachos, D. G.,“Portable power production from methanol in an integrated thermoeletric/microreactor system” Journal of Power Sources, 179, 113-120, 2008.
[45] Yang, W. M., Chou, S. K., Shu, C., Li, Z. W., “A prototype microthermophotovoltaic power generator”, Applied Physics Letters, 84, 3864-3866, 2004.
[46] Yoshida, K., Tanaka, S., Tomonari, S., Satoh, D. and Esashi, M., “High-Energy Density Miniature Thermoelectric Generator Using Catalytic Combustion”, Journal of Microelectromechanical Systems, 15, 195-203, 2006.
[47] Norton, D. G., Wetzel, E. D., Vlachos, D. G., “Thermal Management in Catalytic Microreactors”, Ind. Eng. Chem. Res., 45, 76-84, 2006.
[48] Wijngaards, D. D. L., Cretu E., Kong, S. H. and Wolffenbuttel, R. F., “Modelling of integrated Peltier elements”, International Conferemce on Modelling and Simulation of Microsystem, 2000.
[49] Jacquot, A., Chen, G., Scherrer, H., Dauscher, A., Lenoir, B., “Modeling of on-membrane thermoelectric power supplies”, Sensors and Actuators A, 116, 501-508, 2004.
[50] Kandasamy, S., Pachoud, D., Powell, D. A., Rosengarten, G., Holland,A., Wlodarski, W., “Optimization of film thickness for thermoelectric micro-Peltier cooler”, Proceedings of SPIE, 5649, 640-647, 2005.
[51] Lineykin, S., Shmuel B. Y., “Modeling and Analysis of Thermoelectric Modules”, IEEE Transactions on Industry Applications, 43, 505-512, 2007.
[52] Incropera, F. P. and Dewitt, D. P., Fundamentals of Heat and Mass Transfer, USA, 2002.
[53] 台灣工德股份有限公司,http://www.kumtek.com.tw.
[54] Hi-Z Technology Inc., http:/www.hi-z.com.
[55] Hayes, R. E. and Kolaczkowski, S. T., Introduction to catalytic combustion, Gordon and Breach Science Publishers, 1997.
[56] Fuller, E. N., Schettler, P. D. and Gidding, J. C., “A new Method for prediction of binary gas-phase diffusion coefficient”, Ind. Eng. Chem, 58,19-27, 1996.
[57] Miller, J. A., Bowman, C. T., “Mechanism and modeling of nitrogen chemistry in combustion”, Prog. Energy Combust. Sci., 12, 287-338, 1989.