| 研究生: |
黃郁淳 Yu-Chun Huang |
|---|---|
| 論文名稱: |
太空電漿中之中低頻波的研究 A Study of Medium-and-Low-Frequency Waves in Space Plasma |
| 指導教授: |
呂凌霄
Ling-Hsiao Lyu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 合唱波 、哨波 、質子電子雙流體電漿 、群速度分布 |
| 外文關鍵詞: | chorus wave, whistler wave, ion-electron two-fluid plasma, group-velocity distribution |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地球磁層觀測到的合唱波(chorus waves)屬於電磁波,它們的波頻率範圍低於一個電子回旋頻率,卻遠高於一個質子回旋頻率。其中合唱波最引人注目的一個特徵就是在0.5個電子回旋頻率處有一個缺口(frequency gap),也就是動態頻譜不連續。過去的研究認為0.5個電子回旋頻率的波發生Landau Damping,而導致動態頻譜關係圖(dynamic spectra)中的合唱波中在此頻率處有一個頻率缺口。然而,沒有發生頻率缺口的合唱波也被觀測到。本論文中,我們想要研究在電子質子雙流體電漿裡中低頻波的群速度分布,進而了解波能量的擴散情形。根據群速度分佈資訊來模擬準電磁波的區域擾動源所造成的動態頻譜關係,其中準電磁波表示電磁分量大於靜電分量。我們的理論結果指出快波(fast-mode)波頻率在0.5個電子回旋頻率附近的準電磁波都近乎沿背景磁場傳播,因為它們的群速度分布顯示ray angles非常地小,其中ray angles為群速度傳播方向與背景磁場方向的夾角大小。因此,我們提出當接收器與準電磁波的區域擾動源在同一條磁力管上時,沒有頻率缺口的電磁合唱波就會被觀測到。我們的結果也指出頻率缺口的寬度隨著ray angles變大而變寬。然而,我們也看到另一種沒有頻率缺口的合唱波,它們低於0.5個電子回旋頻率的波(lower-band waves)屬於準靜電波。除了升頻的合唱波外,我們也研究了降頻的哨波。我們找到兩種類型的電磁哨波解。一個是由快波模所得到的low-k_⊥ 哨波,它的群速度與相速度的方向都是近乎沿背景磁場。另一個則是由中速波模(intermediate-mode)所得到的high-k_⊥哨波,它的群速度也是近乎沿背景磁場,但相速度的方向卻是近乎垂直背景磁場。這種high-k_⊥哨波解可以解釋近期的文獻報告稱在地磁緯度11度也觀測到由閃電產生之哨波。
Chorus waves are rising-tone electromagnetic waves with a frequency less than the electron cyclotron frequency but higher than the ion cyclotron frequency. The most noticeable feature of the chorus waves is the frequency gap at half the electron cyclotron frequency on the dynamic spectrum. Previous studies usually attribute the frequency gap to the Landau damping processes. However, chorus waves without a frequency gap have also been observed. In this thesis, the low- and medium-frequency waves in the ion-electron two-fluid plasma are studied in great detail. We examine the expansions of wave energy based on the group-velocity distribution of these waves. We mimic the dynamic spectra of the quasi-electromagnetic waves based on the Friedrichs’ diagrams of the group-velocity distribution when the waves are generated by a localized broadband disturbance. Our theoretical results indicate that the quasi-electromagnetic fast-mode waves have an extremely small expansion angle when the wave frequency is around half the electron cyclotron frequency. Therefore, we propose that the rising-tone electromagnetic chorus waves without a frequency gap can only be observed when the receiver is located in the same flux tube as the source disturbances of the chorus waves. Our results also indicate that the bandwidth of the frequency gap of the electromagnetic chorus waves increases with increasing ray angles of the waves. The group-velocity distributions of the quasi-electrostatic waves in the ion-electron two-fluid plasma have also been studied. No frequency gap is found in the dynamic spectrum of the rising-tone chorus waves when the lower-band waves are quasi-electrostatic. This result is consistent with recent observations. In addition to the rising-tone chorus waves, we also examine the falling tone whistler waves. We obtain two types of falling-tone electromagnetic whistler wave solutions. One of them is the well-known fast-mode low-k_⊥whistler waves, which is characterized by highly field-aligned group velocities and phase velocities. The other is the intermediate-mode high-k_⊥ whistler waves, which is characterized by highly field-aligned group velocity, but with phase velocity nearly perpendicular to the background magnetic field. The high-k_⊥ whistler waves can explain the recent observations of lightning-induced whistler waves at 11 degrees magnetic latitude.
Bian, N. H., Kontar, E. P., & Brown, J. C., Parallel electric field generation by Alfvén wave turbulence, A&A, 519, A114, 2010.
Boardsen, S. A., et al., Survey of the frequency dependent latitudinal distribution of the fast magnetosonic wave mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science waveform receiver plasma wave analysis, J. Geophys. Res. Space Physics, 121, 2902–2921, 2016.
Bonoli, P., Linear theory of lower hybrid heating, IEEE Trans. Plasma Sci., PS-12, no. 2, pp. 95-107, 1984.
Bortnik, J., U. S. Inan, and T. F. Bell, Landau damping and resultant unidirectional propagation of chorus waves, Geophys. Res. Lett., 33, L03102, 2006.
Burtis, W. J., and R. A. Helliwell, Magnetospheric chorus: Occurrence patterns and normalized frequency, Planet. Space Sci., 24, 1007, 1976.
Cao, F., and J. R. Kan, Finite-Larmor-radius effect on field-aligned currents in hydromagnetic waves, J. Geophys. Res., 92, 3397-3401, 1987.
Carpenter, D. L., and R. L. Smith, Whistler measurements of electron density in the magnetosphere, Rev. Geophys., 2(3), 415–441, 1964.
Chaston, C. C., et al., The turbulent Alfvénic aurora. Phys. Rev. Lett., 100, 175003, 2008.
Chen, F. F., Plasma ionization by helicon waves, Plasma Phys. Controlled Fusion, 33 , 339, 1991.
Dubinin, E. M., et al., Coherent whistler emissions in the magnetosphere—Cluster observations, Ann. Geophys., 25, 303–315, 2007.
Gao, X., W. Li, R. M. Thorne, J. Bortnik, V. Angelopoulos, Q. Lu, X. Tao, and S. Wang, Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data, J. Geophys. Res., Space Physics, 119, 8992–9003, 2014.
Gao, X., D. Mourenas, W. Li, A. V. Artemyev, Q. Lu, X. Tao, and S. Wang, Observational evidence of generation mechanisms for very oblique lower band chorus using THEMIS waveform data, J. Geophys. Res., Space Physics, 121, 6732–6748, 2016.
Gendrin, R., Le guidage des whistlers par le champ magnetique, Planet. Space Sci., 5, 274, 1961.
Gokani, S. A., R. Singh, M. B. Cohen, S. Kumar, K. Venkatesham, A. K. Maurya, R. Selvakumaran, and J. Lichtenberger, Very low latitude (L = 1.08) whistlers and correlation with lightning activity, J. Geophys. Res., Space Physics, 120, 6694–6706, 2015.
Gokani, S. A., R. Singh, S. T. Ram, K. Venkatesham, B. Veenadhari, S. Kumar, and R. Selvakumaran, Rare observation of daytime whistlers at very low latitude (L = 1.08), Adv. Space Res., 61, 1909–1918, 2017.
Gurnett, D. A., S. D. Shawhan, N. M. Brice, and R. L. Smith, Ion cyclotronwhistlers, J. Geophys. Res., 70(7), 1665–1688, 1965.
Helliwell, R. A., The role of the Gendrin mode of VLF propagation in the generation of magnetospheric emissions, Geophys. Res. Lett., 22, 2095-2098, 1995.
Helliwell, R. A., J. H. Crary, J. H. Pope, and R. L. Smith, The “NOSE” WHISTLER—A new high‐latitude phenomenon, J. Geophys. Res., 61, 139–142, 1956.
Huang, Y. C., A Study of the Cross-Scale Dispersion Relation of the Fast-Mode, Intermediate-Mode, and Slow-Mode Waves in Space Plasma, M.S. thesis, National Central University, Chung-li, Taiwan, R.O.C, 2011.
Huang, Y. C., and L. H. Lyu, Atlas of the medium frequency waves in the ion-electron two-fluid plasma, Phys. Plasmas, 26, 092102, 2019.
Horne, R., Thorne, R., Shprits, Y. et al., Wave acceleration of electrons in the Van Allen radiation belts, Nature, 437, 227–230, 2005.
Kantrowitz, A., and H. E. Petschek, “MHD characteristics and shock waves,” in Plasma Physics in Theory and Application, edited by W. B. Kunkel, pp. 148-206, McGraw-Hill, New York, 1966.
Kivelson, M. G., Pulsations and magnetohydrodynamic waves, in Introduction to Space Physics, Eds. M. G. Kivelson and C. T. Russell, pp. 330-355, Cambridge University Press, New York, 1995.
Koons, H. C., J. L. Roeder, A survey of equatorial magnetospheric wave activity between 5 and 8 RE, Planet. Space Sci., 38, 1335, 1990.
Kurita, S., Y. Katoh, Y. Omura, V. Angelopoulos, C. M. Cully, O. Le Contel, and H. Misawa, THEMIS observation of chorus elements without a gap at half the gyrofrequency, J. Geophys. Res., 117, A11223, 2012.
Lai, S. H., and L. H. Lyu, Nonlinear evolution of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 111, A01202, 2006.
Lai, S. H., and L. H. Lyu, Nonlinear evolution of the jet-flow-associated Kelvin-Helmholtz instability in MHD plasmas and the formation of Mach-cone-like plane waves, J. Geophys. Res., 113, A06217, 2008.
Landau, L. D., and E. M. Lifshitz, Fluid Mechanics, second edition, Pergamon Press, Oxford, 1987.
Li, W., J. Bortnik, R. M. Thorne, and V. Angelopoulos, Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations, J. Geophys. Res., 116, A12205, 2011a.
Li, W., Thorne, R. M., Bortnik, J., Shprits, Y. Y., Nishimura, Y., Angelopoulos, V., Chaston, C., Le Contel, O., and Bonnell, J. W., Typical properties of rising and falling tone chorus waves, Geophys. Res. Lett., 38, L14103, 2011b.
Li, W., J. Bortnik, R. M. Thorne, C. M. Cully, L. Chen, V. Angelopoulos, Y. Nishimura, J. B. Tao, J. W. Bonnell, and O. LeContel, Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS, J. Geophys. Res. Space Physics, 118, 1461–1471, 2013.
Li, W., O. Santolík, J. Bortnik, R. M. Thorne, C. A. Kletzing, W. S. Kurth, and G. B. Hospodarsky, New chorus wave properties near the equator from Van Allen Probes wave observations, Geophys. Res. Lett., 43, 4725–4735, 2016a.
Li, W., et al., Untraveling the excitation mechanisms of highly oblique lower band chorus waves, Geophys. Res. Lett., 43, 8867–8875, 2016b.
Lysak, R. L., and W. Lotko, On the kinetic dispersion relation for shear Alfvén waves, J. Geophys. Res., 101(A3), 5085–5094, 1996.
Lyu, L. H. and J. R. Kan, Nonlinear two-fluid hydromagnetic waves in the solar wind: Rotational discontinuity, soliton, and finite-extent Alfvén wave train solutions, J. Geophys. Res., 94, 6523, 1989.
Lyu, Ling-Hsiao, Elementary Space Plasma Physics Second Edition, Airiti Press, Taiwan, R.O.C., 2014.
Ma, Q., Li, W., Bortnik, J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., & Wygant, J. R., Global survey and empirical model of fast magnetosonic waves over their full frequency range in earth's inner magnetosphere. Journal of Geophysical Research: Space Physics, 124, 10270–10282, 2019.
Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson, Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt, Geophys. Res. Lett., 30(16), 1871, 2003.
Musielak, Z. E., Phase and group velocities of waves in cold plasma, M. I. T. Technical Report, CSR-TR-84-3, 1984.
Musielak, Z. E., Relationship between directions of wave and energy propagation for cold plasma waves, J. Plasma Phys., 36, 341-356, 1986
Omura, Y., Y. Katoh, and D. Summers, Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, 2008.
Omura, Y., M. Hikishima, Y. Katoh, D. Summers, and S. Yagitani, Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere, J. Geophys. Res., 114, A07217, 2009.
Pickett, J. S., et al., Multi-point cluster observations of VLF risers, fallers and hooks at and near the plasmapause, in Multiscale Processes in the Earth’s Magnetosphere: From Interball to Cluster, edited by J.-A. Sauvaud and Z. Nemecek, pp. 307-328, Kluwer Academic Publ., Netherlands., 2004.
Remya, K. H. Lee, L. C. Lee, and B. T. Tsurutani, Polarization of obliquely propagating whistler mode waves based on linear dispersion theory, Phys. Plasmas, 23, 122120, 2016.
Sahraoui, F., G. Belmont, and M. L. Goldstein, New insight into shortwavelength solar wind turbulence from Vlasov theory, Astrophys. J., 748, 100, 2012.
Santolík, O., Pickett, J. S., & Gurnett, D. A., Spatiotemporal variability and propagation of equatorial noise observed by Cluster, Journal of Geophysical Research, 107(A12), 1495, 2002.
Shue J.‐H., Y.‐K. Hsieh, S. W. Y. Tam, K. Wang, H. S. Fu, J. Bortnik, X. Tao, W. C. Hsieh, and G. Pi, Local time distributions of repetition periods for Rising tone lower band chorus waves in the magnetosphere, Geophys. Res. Lett., 42, 8294–8301, 2015.
Smith, R. L., Propagation characteristics of whistlers trapped in field-aligned columns of enhanced ionization, J. Geophys. Res., 66, 3600, 1961.
Smith, R. L., and J. J. Angerami, Magnetospheric properties deduced from OGO 1 observations of ducted and nonducted whistlers, J. Geophys. Res., 73, 1, 1968.
Stasiewicz, K., Bellan, P., Chaston, C. et al. Small Scale Alfvénic Structure in the Aurora. Space Science Reviews, 92, 423–533, 2000.
Stix, T. H., The Theory of Plasma Waves, McGraw-Hill Book Company, New York., 1962.
Stringer, T. E., Low-frequency waves in an unbounded plasma, Plasma Phys. J. Nucl. Energy, Part C, 5, 89, 1963.
Su, Z., et al. (2014), Intense
duskside lower band chorus
waves observed by Van Allen
Probes: Generation and potential
acceleration effect on radiation
belt electrons, J. Geophys. Res.
Space Physics, 119, 4266–4273,
doi:10.1002/2014JA019919.
Su, Z., et al. (2014), Intense
duskside lower band chorus
waves observed by Van Allen
Probes: Generation and potential
acceleration effect on radiation
belt electrons, J. Geophys. Res.
Space Physics, 119, 4266–4273,
doi:10.1002/2014JA019919.
Su, Z., et al. (2014), Intense
duskside lower band chorus
waves observed by Van Allen
Probes: Generation and potential
acceleration effect on radiation
belt electrons, J. Geophys. Res.
Space Physics, 119, 4266–4273,
doi:10.1002/2014JA019919.
Su, Z., et al., Intense duskside lower band chorus waves observed by Van AllenProbes: Generation and potential acceleration effect on radiation belt electrons, J. Geophys. Res. Space Physics, 119, 4266– 4273, 2014.
Taubenschuss, U., Y. V. Khotyaintsev, O. Santolík, A. Vaivads, C. M. Cully, O. Le Contel, and V. Angelopoulos, Wave normal angles of whistler mode chorus rising and falling tones, J. Geophys. Res. Space Physics, 119, 9567–9578, 2014.
Taubenschuss, U., O. Santolík, D. B. Graham, H. Fu, Y. V. Khotyaintsev, and O. Le Contel, Different types of whistler mode chorus in the equatorial source region, Geophys. Res. Lett., 42, 8271–8279, 2015.
Tsurutani, B. T., and E. J. Smith, Postmidnight chorus: A substorm phenomenon, J. Geophys. Res., 79(1), 118–127, 1974.
Tsurutani B. T., O. P. Verkhoglyadova, G. S. Lakhina, and S. Yagitani, Properties of dayside outer zone chorus during HILDCAA events: Loss of energetic electrons, J. Geophys. Res., 114, A03207, 2009.
Verkhoglyadova, O. P., and B. T. Tsurutani, Polarization properties of Gendrin mode waves observed in the Earth’s magnetosphere: observations and theory, Ann. Geophys., 27, 4429–4433, 2009.
Verkhoglyadova, O. P., B. T. Tsurutani, and G. S. Lakhina, Properties of obliquely propagating chorus, J. Geophys. Res., 115, A00F19, 2010.
Vincena, S., W. Gekelman, and J. Maggs, Shear Alfvén wave per-pendicular propagation from the kinetic to the inertial regime, Phys. Rev. Lett., 93, 105003, 2004
Wygant, J. R., et al., Polar spacecraft-based comparisons of intense electric fields and Poynting flux near and within the plasma sheet tail lobe boundary to UVI images: An energy source for the aurora, J. Geophys. Res., 105, 18,675, 2000.
Wygant, J. R., et al., Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 R E altitudes in the plasma sheet boundary layer, J. Geophys. Res., 107(A8), 2002.
Yagitani, S., T. Habagishi, and Y. Omura, Geotail observation of upper band and lower band chorus elements in the outer magnetosphere, J. Geophys. Res. Space Physics, 119, 4694–4705, 2014.
Zhou, M., et al., Observation of large-amplitude magnetosonic waves at dipolarization fronts, J. Geophys. Res. Space Physics, 119, 4335–4347, 2014.