跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉佑聖
You-Sheng Liu
論文名稱: 基於 Copula 模型的資產配置及台灣股票市場的應用
Portfolio Selection Based on Copula Models with Applications in Taiwan Stock Market
指導教授: 鄧惠文
Huei-Wen Teng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 99
語文別: 英文
論文頁數: 41
中文關鍵詞: 非對稱相關模擬退火法copula投資組合
外文關鍵詞: simulated annealing, portfolio selection, copula, asymmetric dependence
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近在金融實證上的文獻指出,在股價報酬率的聯合分佈具有不對稱的相關性。Copula 提供一個方便的架構去描述不對稱的相關性結構。在這篇論文中,我們比較傳統上對報酬率作的常態分佈假設與使用Copula 建構出比較彈性的多元分佈。在Markowitz 的Mean-Variance 架構下,我們考慮一個風險趨避的投資者配置財富於不同的資產。我們用Copula 去建構高維度報酬率的分佈並使用模擬退火法去選擇最佳的權重。最後我們應用我們的方法於投資組合在台灣的股票市場。


    Recent studies in the empirical finance literature have reported asymmetric dependence in the joint distribution of stock returns. Copula provides a convenient framework to describe asymmetric dependence structure. In this thesis, we compare traditional multivariate normal distribution assumption for return and a flexible multivariate distribution using copula. Under Markowitz’s mean-variance framework (Markowitz, 1952), we consider a risk averse investor allocating wealth among different assets. We use copula to construct high-dimensional distribution of return, and propose a simulated annealing algorithm to select the optimal portfolio weights. We apply our approach for portfolio selection in Taiwan stock market.

    Contents 1 Introduction 1 2 Preliminaries 3 2.1 Portfolio optimization . . . . . . . . . . . . . . . . . . . 3 2.1.1 Mean-Variance Model . . . . . . . . . . . 3 2.1.2 The solution of the Mean-Variance Model . . 4 2.1.3 The Expected Utility model . . . .. . . . . 4 2.2 Copulas . . . . . . . . . . . 5 3 Our approaches 9 3.1 Model calibration . . . . . . . . . . . . 9 3.2 Simulated annealing . .. . . . . . . . . . . 10 4 Simulation 11 4.1 Model calibration . . . .. . . . . . . . . . 11 4.2 Searching optimal weights using simulated annealing 13 5 Real data analysis 16 5.1 Two stocks . . . . . . . . . . 16 5.2 Three stocks . . . . . . . . . . . . 22 6 Conclusion 28 6.1 Summary . . . . . . . . . . . . . . . . . 28 6.2 Future work . . . . . . . . . . . . . . 28 References 30

    [1] Ang, A., and Chen, J. Asymmetric correlations of equity portfolios. Journal of
    Financial Economics 63 (2002), 443–494.
    [2] Erb, C. B., Harvey, C. R., and Viskanta, T. E. Forecasting international
    equity correlations. Financial Analysts Journal 50 (1994), 32–45.
    [3] Greyserman, A., Jones, D. H., and Strawderman, W. E. Portfolio selec-
    tion using hierarchical bayesian analysis and MCMC methods. Journal of Banking
    Finance 30 (2006), 669–678.
    [4] Harvey, C. R., Liechty, J. C., Liechty, M. W., and M¨uller, P. Portfolio
    selection with higher moments.
    [5] Joe, H. Multivariate Models and Dependence Concepts. Chapman and Hall., Lon-
    don, 1997.
    [6] Longin, F., and Solnik, B. Extreme correlation of international equity markets.
    Journal of Finance 56 (2001), 649–676.
    [7] Markowitz, H. Portfolio selection. The Journal of Finance 7 (1952), 77–91.
    [8] Nelsen, R. B. An Introduction to Copulas. Springer-Verlag., New York, 1999.
    [9] Patton, A. J. On the out-of-sample importance of skewness and asymmetric de-
    pendence for asset allocation. Journal of Financial Econometrics 2 (2004), 130–168.
    [10] Sklar, A. Fonctions de repartition ´a n dimensions et leurs marges. Publications de
    l Institut Statistique de lUniversite de Paris 8 (1959), 229–231.

    QR CODE
    :::