跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳張宗榮
Tzong-Rong Chen
論文名稱: 使用碎形維度分析於胎兒之磁振影像大腦皮質表面的複雜度量測
Complexity Measurement of Fetal Cortical Surfaces from Magnetic Resonance Images using Fractal Dimension Analysis
指導教授: 徐國鎧
Kuo-Kai Shyu
吳育德
Yu-Te Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 74
中文關鍵詞: 碎形維度磁振影像胎兒腦皮質複雜度
外文關鍵詞: Magnetic resonant images, Fractal dimension, Fetus, Cortical complexity
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然成年人大腦表面複雜度的碎形分析已經被研究了許多年;碎形維度分析的使用,對於發育中胎兒的大腦表面的複雜度測量,卻未曾被探索。這篇論文意在使用碎形維度分析的概念,來測量發育中胎兒的大腦表面的複雜度。為了量化碎形維度,進而能清楚了解胎兒大腦表面複雜度,文中探討從二維擴展到三維的四種碎形維度分析方法。這三維碎形維度分析的方法,應用在分析32個正常胎兒大腦及6個受試胎兒大腦,孕齡在22到37週間,並估測其碎形維度。由正常胎兒大腦結果顯示:胎兒腦皮質複雜度, 隨胎兒的懷孕週數增長而增加。在相同懷孕週數下, 雙胞胎的碎形維度結果比正常胎兒為低, 顯示雙胞胎的發育會有二到三週的延遲。大腦發展遲緩的胎腦也具有低的碎形維度, 顯示發展的遲緩意味著較少的大腦表面複雜度。這些結果與胎兒大腦的發育是一致的, 且證明三維碎形維度分析的方法,對胎兒大腦的表面複雜度量測是一個有效的方法。


    Although fractal dimension (FD) analyses of adult human brain complexity have been performed for several years; the use of FD analysis for complexity measurement of the developmental fetal cortical surface has not been investigated. This work aims to measure complexity of the developmental fetal cortical surface from magnetic resonant images (MRI) using the concept of FD analysis. To quantify the FD that clarifies the complexity of fetal cortical surface, four methods of FD analysis were presented and extended from 2D to 3D. The presented 3D methods of FD analysis were then adopted to estimate the FD for complexity of developmental fetal cortical surface of 32 normal brains and 6 testing brains at a gestational age (GA) of 27–37 weeks. The results for normal brains reveal that the increase in complexity of cortical surface is correlated with the gestational age of the fetus. The FD results of the twins are lower than that of normal cases, showing a delay of 2-3 weeks may occur in the twins. Observation of cortical dysplasia has low FD, indicating that cortical dysplasia may mean less cortical complexity. These results are in good agreement with fetal brain development and demonstrate that the proposed methods of FD analysis are an effective means for complexity measurement of fetal cortical surface.

    中文摘要 ............................................... ii Abstract .............................................. iii List of Contents ....................................... iv List of Figures ........................................ vi List of Tables ....................... ................. ix Chapter 1. Introduction ................................ 1 1.1 Motivation and Background .......................... 1 1.2 Review of Previous Works ……....................... 3 1.3 Purpose and Contribution ........................... 5 1.4 Organization of the Dissertation ................... 7 Chapter 2. System Architecture for Complexity Measurement of Fetal Brains ......................................... 8 2.1 Subjects and Data Acquisition ...................... 8 2.2 The Processing Steps for Measuring Complexity of Fetal MR Images ......................................... 9 2.3 Theory of Fractal Dimension Analysis............... 14 Chapter 3. Methods of Fractal Dimension Estimation .... 19 3.1 The Box-Counting Fractal Dimension Method ......... 19 3.1.1 The Traditional 2D Box-Counting Method .......... 19 3.1.2 The 3D Box-Counting Method ...................... 21 3.1.3 The 3D Modified Box-Counting Method ............. 22 3.2 The Entropy Based Information Fractal Dimension Method ................................................. 25 3.2.1 The 2D Entropy-Based Information Method.......... 25 3.2.2 The 3D Entropy-Based Information Method.......... 29 3.3 The 3D FFT Fractal Dimension Method ............... 31 3.4.1 The Correlation Dimension Method ................ 31 3.4.2 The 3D FFT Fractal Dimension Method ............. 32 3.3 The 3D Box-Counting Method with Local FD Measure .. 34 3.3.1 The Linear Regression Analysis .................. 34 3.3.2 The Local FD Measure Box-counting Method ........ 36 Chapter 4. Results and Discussion ..................... 39 4.1 Results ........................................... 39 4.1.1 The FD Results of the Phantom Fractal Images .... 39 4.1.2 Results of Preprocessing of Fetal Cortical Brain MR images ................................................. 41 4.1.3 The FD Results of a Fetal Cortical Brain ........ 44 4.1.4 The FD Results of Developmental Fetal Cortical Surface ................................................ 47 4.2 Discussion ........................................ 49 Chapter 5. Conclusions and Future Works ................ 52 5.1 Conclusions ........................................ 52 5.2 Future Works ....................................... 55 References ............................................. 56 Appendix …............................................. 63 List of Publications ................................... 64

    References
    [1]. D. Prayer, G. Kasprian, E. Krampl, B. Ulm, L. Witzani, L. Prayer and P. C. Brugger, ”MRI of normal fetal brain development,” European Journal of Radiology, Vol. 57, pp. 199-216, 2006.
    [2]. C. Garel, MRI of the Fetal Brain, New York, Springer, 2004.
    [3]. C. Garel, E. Chantrel, H. Brisse, M. Elmaleh, D. Luton, J. F. Oury, G. Sebag and M. Hassan, ”Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging,” American Journal of Neuroradiology, Vol. 22, No. 1, pp. 184-189, 2001.
    [4]. W. Y. Guo and T. T. Wong, “Screening of fetal CNS anomalies by MR imaging,” Child''s Nervous System, Vol. 19, pp. 410- 414, 2003.
    [5]. K. Falconer, Fractal Geometry- Mathematical Foundations and Applications, 2nd edition, England, Wiley, 2003.
    [6]. H. O. Peitgen, H. Jurgens and D. Saupe, Chaos and Fractals New Frontiers of Science, New York, Springer, 1992.
    [7]. T. Vicsek, Fractal Growth Phenomena, Singapore, World Scientific, 1990.
    [8]. S. Liu, Fractals and their Applications in Condensed Matter Physics, New York, Academic Press, 1986.
    [9]. B. B. Mandelbrot, The Fractal Geometry of Nature, New York, Freeman, 1982.
    [10]. J. Stoitsis, S. Golemati and K. S. Nikita., “A Modular Software System to Assist Interpretation of Medical Images- Application to Vascular Ultrasound Images,” IEEE Trans. Instrumentation and Measurement, Vol. 55, No. 6, pp. 1944-1952, Dec., 2006.
    [11]. V. Varadan, H. Leung and E. Bosse, “Dynamical model reconstruction and accurate prediction of power-pool time series,” IEEE Trans. Instrumentation and Measurement, Vol. 55, No.1, pp. 327-336, Feb., 2006.
    [12]. G. Lin, B. F. Feeny and T. Das, “Fractional derivative reconstruction of forced oscillators,” Nonlinear Dynamics, Vol. 55, No. 3, pp. 239-250, 2009.
    [13]. A. N. Sharkovsky, “Ideal Turbulence,” Nonlinear Dynamics, Vol.44, No. 1, pp. 15-27, 2006.
    [14]. M. H. Horng, “Multi-class support vector machine for classification of the ultrasonic images of supraspinatus,” Expert Systems with Applications, Vol.36, No.4, pp. 8124-8133, 2009.
    [15]. R. Boostani, K. Sadatnezhad and M. Sabeti, ”An efficient classifier to diagnose of schizophrenia based on the EEG signals,” Expert Systems with Applications, Vol. 36, No. 3, pp. 6492-6499, 2009.
    [16]. A. Ozturk, A. Arslan and F. Hardalac, “Comparison of neuro-fuzzy systems for classification of transcranial Doppler signals with their chaotic invariant measures, ” Expert Systems with Applications, Vol. 34, No. 2, pp. 1044-1055, 2008.
    [17]. M. A. Hofman, “The fractal geometry of convoluted brains,” Journal für Hirnforschung, Vol. 32, No. 1, pp. 103-111, 1991.
    [18]. S. Majumdar and R.R. Prasad, ”The fractal dimension of cerebral surfaces using magnetic resonance images,” Computers in Physics, Vol. 2, No. 6, pp. 69-73, 1988.
    [19]. E. Bullmore, M. Brammer, I. Harvey, R. Persaud, R. Murray and M. Ron, ”Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: A controlled study of schizophrenic and manic-depressive patients,” Psychological Medicine, Vol. 24, pp. 771-781, 1994.
    [20]. S. L. Free, S. M. Sisodiya, M. J. Cook, D. R. Fish and S. D. Shorvon, ”Three dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain,” Cerebral Cortex, Vol. 6, pp. 830-836, 1996.
    [21]. P. M. Thompson, C. Schwartz, R. T. Lin, A. A. Khan and A. W. Toga, ”Three dimensional statistical analysis of sulcal variability in the human brain,” Journal of Neuroscience, Vol. 16, No. 13, pp. 4261– 4274, July, 1996.
    [22]. R. E. Blanton, J.G. Levitt, P. M. Thompson, K. L. Narr, L. Capetillo-Cunliffe, A. Nobel, J. D. Singerman, J.T. McCracken and A. W. Toga, ”Mapping cortical asymmetry and complexity patterns in normal children,” Psychiatry Research, Vol. 107, No. 1, pp. 29–43, July, 2001.
    [23]. J. M. Lee, U. Yoon, J. J. Kim, I. Y. Kim, D. S. Lee, J. S. Kwon and S. I. Kim, ”Analysis of the hemispheric asymmetry using fractal dimension of a skeletonized cerebral surface,” IEEE Trans. Biomedical Engineering, Vol. 51, No. 8, pp. 1494-1498, Aug., 2004.
    [24]. L. Zhang, J. Z. Liu, D. Dean, V. Sahgal and G. H. Yue, ”A three-dimensional fractal analysis method for quantifying white matter structure in human brain,” Journal of Neuroscience Methods, Vol. 150, No. 2, pp. 242-253, 2006.
    [25]. L. Zhang, D. Dean, J. Z. Liu, V. Sahgal, X. Wang and G. H. Yue, “Quantifying degeneration of white matter in normal aging using fractal dimension, ” Neurobiology of Aging, Vol. 28, pp. 1543-1555, 2007.
    [26]. J. Z. Liu, L. D. Zhang and G. H. Yue, “Fractal dimension in human cerebellum measured by magnetic resonance imaging, ”Biophysical Journal, Vol. 85, pp. 4041– 6, 2003.
    [27]. K. Im, J. M. Lee, U. Yoon, Y. M. Shin, S. B. Hong, I. Y. Kim, J. S. Kwon and S. I. Kim, “Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area,” Human Brain Mapping, Vol. 27, No. 12, pp. 994–1003, 2006.
    [28]. J. Jiang, W. Zhu, F. Shi, Y. Zhang, L. Lin and T. Jiang, “A robust and accurate algorithm for estimating the complexity of the cortical surface,” Journal of Neuroscience Methods, Vol. 172, pp. 122–130, 2008.
    [29]. F. J. Esteban, J. Sepulcre, J. R. deMiras, J. Navas, N. V. deMendizábal, J. Goñi, J. M. Quesada, B. Bejarano and P. Villoslada, “Fractal dimension analysis of grey matter in multiple sclerosis, “Journal of Neuroscience, Vol. 282, No. 1, pp. 67-71, 2009.
    [30]. Z.Y. Shan, J.Z. Liu, J.O. Glassa, A. Gajjarc, C. S. Lid, W. E. Reddicka, “Quantitative morphologic evaluation of white matter in survivors of childhood medulloblastoma,” Magnetic Resonance Imaging , Vol. 24, pp. 1015–1022, 2006.
    [31]. J. Z. Liu, L.D. Zhang and G. H. Yue, “Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging,” Biophysical Journal, Vol. 85, pp. 4041-4046, 2003.
    [32]. V. G. Kiselev, K. R. Hahn and D. P. Auer, “Is the brain cortex a fractal? , ” Neuroimage, Vol. 20, No. 3, pp. 1765-1774, 2003.
    [33]. S. L. Free, S. M. Sisodiya, M. J. Cook, D. R. Fish and S. D. Shorvon, “Three dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain,” Cerebral Cortex , Vol. 6, pp. 830-836, 1996.
    [34]. J. M. Lee , U. Yoon, J. J. Kim, I. Y. Kim, D. S. Lee, J. S. Kwon and S. I. Kim, “Analysis of the hemispheric asymmetry using fractal dimension of a skeletonized cerebral surface,” IEEE Trans. Biomedical Engineering, Vol. 51, No. 8, pp. 1494-1498, 2004.
    [35]. F. J. Esteban, J. Sepulcre, N. V. de Mendizábal, J. Goñi, J. Navas, J. R. de Miras, B. Bejarano, J. C. Masdeu and P. Villoslada, ”Fractal dimension and white matter changes in multiple sclerosis,” NeuroImage, Vol. 36, 543-549 (2007)
    [36]. A. L. Sandu, I. A. Rasmussen Jr., A. Lundervold, F. Kreuder Frank, G. Neckelmann, K. Hugdahl and K. Specht, “Fractal dimension analysis of MR images reveals grey matter structure irregularities in schizophrenia,” Computerized Medical Imaging and Graphics. Vol. 32, pp. 150-158, 2008.
    [37]. J. M. Zook and K. M. Iftekharuddin, “Statistical analysis of fractal-based brain tumor detection algorithms,” Magnetic Resonance Imaging , Vol. 23, pp. 671-678, 2005.
    [38]. F. J. Esteban, J. Sepulcre, J. R. de Miras, J. Navas, N. V. de Mendizábal, J. Goñi, J. M. Quesada, B. Bejarano and P. Villoslada, “Fractal dimension analysis of grey matter in multiple sclerosis,” Journal of Neuroscience, Vol. 282, pp. 67-71, 2009.
    [39]. T. H. Ha, U. Yoon, K. J. Lee, Y. W. Shin, J. M. Lee, I. Y. Kim, K. S. Ha, S. I. Kim and J. S. Kwon, “Fractal dimension of cerebral cortical surface in schizophrenia and obsessive–compulsive disorder,” Neuroscience Letters , Vol. 384, pp. 172-176, 2005.
    [40]. L. Zhang, D. Dean, J. Z. Liu, V. Sahgal, X. Wang, G. H. Yue,: “Quantifying degeneration of white matter in normal aging using fractal dimension,” Neurobiology of Aging, Vol. 28, pp. 1543-1555, 2007.
    [41]. M. Rybaczuk, A. Kedzia and E. Blaszczyk, “ Fractal description of cerebellum surface during fetal period,” Folia Morphologica, Vol. 55, No. 4, 434–436, 1996.
    [42]. R. E. Blanton, J. G. Levitt, P. M. Thompson, K. L. Narr, L. Capetillo-Cunliffe, A. Nobel, J. D. Singerman, J. T. McCracken, and A. W. Toga, “Mapping cortical asymmetry and complexity patterns in normal children,” Psychiatry Research, Vol. 107, pp. 29–43, 2001.
    [43]. J. G. Chi, E. C. Dooling and F. H. Gilles,” Gyral development of the human brain,” Annals of Neurology, Vol. 1, pp. 86-93, 1977.
    [44]. R. C. Gonzalez, R. E Woods, Digital Image Processing, Addison-Wesley, New York, 1993.
    [45]. J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, pp. 679- 698, 1986.
    [46]. H. H. Hu, W. Y. Guo, H. Y. Chen, P. S. Wang, C. I. Hung, J. C. Hsieh and Y. T. Wu, “Morphological Regionalization using Fetal Magnetic Resonance (MR) Images of Normal Developing Brains,” European Journal of Neuroscience, Vol. 29, pp. 1560–1567, 2009.
    [47]. W. E. Lorensen and H. E. Cline, ”Marching cubes: A high resolution 3D surface construction algorithm,” Proceedings of the SIGGRAPH in Computer Graphics, Vol. 21, No. 4, pp. 163-169, 1987.
    [48]. F. J. Herbert and E. Fernandez, ”Neurons and fractals: how reliable and useful are calculations of fractal dimensions?, ” Journal of Neuroscience Methods, Vol. 81, No. 1-2, pp. 9-18, 1998.
    [49]. T. G. Smith, T. N. Behar, G. D. Lange, W. H. Sheriff and E. A. Neale, “A fractal analysis of cell images,” Journal of Neuroscience Methods, Vol. 27, pp. 173-180, 1989.
    [50]. A. Kedzia, M. Rybaczuk and R. Andrzejak, “Fractal dimensions of human brain cortex vessels during the fetal period,” Medical Science Monitor, Vol. 8, No. 3, pp. 46-51, 2002.
    [51]. J. Theiler, ”Estimating fractal dimension,” Journal of the Optical Society of America, Vol. 7, No. 6, pp. 1055-1073, 1990.
    [52]. M. C. Thomas and J. A. Thomas, Elements of Information Theory, Second Edition, Wiley & Sons, 2006.
    [53]. J. Jiang, W. Zhu, F. Shi, Y. Zhang, L. Lin and T. Jiang, “A robust and accurate algorithm for estimating the complexity of the cortical surface,” J. Neurosci Methods, vol. 172, pp. 122–30, 2008.
    [54]. K. Im, J. M. Lee, U. Yoon, Y. M. Shin, S. B. Hong, I. Y. Kim, J. S. Kwon and S. I. Kim, “Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area,” Human Brain Mapping, Vol. 27, No. 12, pp. 994–1003, 2006.
    [55]. J. Z. Liu, L. D. Zhang and G. H. Yue, “Fractal dimension in human cerebellum measured by magnetic resonance imaging, ” Biophysical Journal, Vol. 85, pp. 4041– 4046, 2003.
    [56]. L. Szilágyi, S. M. Szilágyi and Z. Benyó, “A Modified Fuzzy C-Means Algorithm for MR Brain Image Segmentation,” Lecture Notes in Computer Science, Vol. 4633, pp. 866-877, Springer, 2007.
    [57]. M. J. Cook, S. L. Free, M. R. A. Manford, D. R. Fish, and S. D. Shorvon and J. M. Stevens, “Fractal description of cerebral cortical patterns in frontal lobe epilepsy,” European Neurology, Vol. 35, pp. 327–335, 1995.

    QR CODE
    :::