跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘立佳
Li-Chia Pan
論文名稱: 盈餘慣性之影響因素:資訊不對稱、流動性以及行為偏誤
The Reasons of PEAD: Information Asymmetry, Liquidity, and Behavioral Bias
指導教授: 賴弘能
Hung-Neng Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 42
中文關鍵詞: 盈餘宣告後股價飄移資訊不對稱流動性行為偏誤
外文關鍵詞: PEAD, information asymmetric, liquidity, behavioral bias
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 響盈餘宣告後股價飄移(post-earnings-announcement drift, PEAD)的因素有許多,本
    文從中整理出三大原因分別為資訊不對稱、流動性以及投資人的行為偏誤, 並進一步探
    討三大因素對飄移的影響,同時驗證三大因素都考慮的情況下對股價漂移的影響,檢驗
    哪項因素是造成漂移最具解釋能力的原因。
    整理出三項主要因素下, 在每項因素中各選取兩項變數來對飄移做驗證。 股價飄移
    以宣告後 60 天的累積超額報酬(CAR)為觀察, 並將其依正負號分為 CAR+ 及 CAR- 以
    利於觀察股價飄移方向。資訊不對稱部分選擇PIN和AIV兩變數作為代替, Realize spread
    (Realsp) 和 Illiquidity 則為流動性因素的代理,而行為偏誤為過度自信及注意力不集中
    兩類,又分別以 Turnover 和 Friday (公司盈餘宣告日是否為星期五) 兩變數代理。本文
    主要研究 2014 年全年公司盈餘宣告後的股價飄移,並依各項變數所需不同之數據抓取
    2013 至 2015 年的資料做計算。 大多數公司為季宣告,因此每三個月為一次研究事件,
    實證研究顯示在 CAR+ 或 CAR- 的結果中,只有流動性這項因素是兩個變數
    (Realsp 及 Illiquidity) 都顯著的,因此可以說在這三項因素中流動性是對 PEAD 最具
    解釋能力的, 其中 Realsp 這項變數的顯著水準更高,顯示本文結果表示其比起
    Illiquidity 能夠更好的衡量流動性。


    Many factors cause post-earnings-announcement drift (PEAD). This thesis points out
    three major causes as information asymmetry, liquidity, and investor behavioral bias, and
    further explores the impact of these factors on the drift of stock price. This impact is then
    verified and tests are conducted to find out which factor is the most crucial cause of PEAD.
    After summarizing three main factors, I select two variables in each factor to examine
    their effect on drift. The drift of stock price is observed based on cumulative abnormal return
    (CAR), which is divided into CAR+ and CAR- to facilitate the observation of the direction of
    stock price drift according to the sign. For the information asymmetry part, the probability of
    informed trading (PIN) and abnormal idiosyncratic volatility (AIV) are selected. Realize
    spread (Realsp) and Illiquidity are proxies for liquidity factors. Overconfidence and
    inattention represent behavioral biases and I use Turnover and if firms announce on Friday or
    not as proxies. This thesis mainly studies the drift after the companies’ earnings
    announcement for the whole year of 2014, and as most companies announce quarterly, every
    three months is a research event.
    Empirical research shows that in the regression results of CAR+ and CAR-, only the
    liquidity factor (Realsp and Illiquidity) is significant for both. Therefore, it can be said that
    liquidity is the most important reason for PEAD among these three factors. Furthermore, the
    significant level of the variable Realsp is higher, showing that the results of this thesis
    indicate that it can better measure liquidity than Illiquidity

    摘要......................................................................................................................................i Abstract ...............................................................................................................................ii Contents..............................................................................................................................iii 1. Introduction ................................................................................................................1 2. Literature review and hypothesis................................................................................3 2.1. PEAD..........................................................................................................3 2.2. Proxies variables.........................................................................................5 2.3. Hypothesis ..................................................................................................7 3. Methodology and data ................................................................................................8 3.1. Information asymmetry variables.............................................................10 3.1.1. PIN....................................................................................................10 3.1.2. AIV ...................................................................................................12 3.2. Liquidity variables....................................................................................14 3.2.1. Illiquidity ..........................................................................................14 3.2.2. Realized spread.................................................................................14 3.3. Behavioral bias variables..........................................................................15 3.3.1. Friday................................................................................................15 3.3.2. Turnover ...........................................................................................15 3.4. Other variables..........................................................................................16 3.5. Methodology.............................................................................................18 3.6. Data...........................................................................................................20 4. Empirical results and discussion ..............................................................................25 4.1. Empirical results.......................................................................................25 4.2. Discussion.................................................................................................29 5. Conclusion................................................................................................................31 References .........................................................................................................................32

    Abarbanell, J. S., and Bernard, V. L. (1992). Tests of analysts' overreaction/underreaction to
    earnings information as an explanation for anomalous stock price behavior. The Journal
    of Finance, 47(3), 1181-1207.
    Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal
    of Financial Markets, 5(1), 31–56
    Amihud, Y., & Noh, J. (2021). Illiquidity and Stock Returns II: Cross-section and Time-series
    Effects. The Review of Financial Studies, 34(4), 2101-2123.
    Balakrishnan, K., Bartov, E. and Faurel, L. (2010). Post loss/profit announcement drift.
    Journal of Accounting and Economics, 50(1), 20-41
    Barber, B. M., and Odean, T. (2000). Trading is hazardous to your wealth: the common stock
    investment performance of individual investors. The Journal of Finance, 55(2), 773-806.
    Bartov, E., Radhakrishnan, S., and Krinsky, I. (2000). Investor sophistication and patterns in
    stock returns after earnings announcements. The Accounting Review, 75(1), 43-63.
    Beaver, W. H. (1968). The information content of annual earnings announcements. Journal of
    Accounting Research, 67-92.33
    Bernard, V. L., and Thomas, J. K. (1989). Post-earnings-announcement drift: delayed price
    response or risk premium? Journal of Accounting Research, 27, 1-36.
    Bhushan, R. (1994). An informational efficiency perspective on the post-earnings
    announcement drift. Journal of Accounting and Economics, 18(1), 45-65.
    Brennan, M. J., Huh, S. W., and Subrahmanyam, A. (2016). Asymmetric effects of informed
    trading on the cost of equity capital. Management Science, 62(9), 2460-2480.
    Brown, S., Hillegeist, S. A., and Lo, K. (2009). The effect of earnings surprises on
    information asymmetry. Journal of Accounting and Economics, 47(3), 208-225.
    Chen, J. Z., Lobo, G. J., & Zhang, J. H. (2017). Accounting quality, liquidity risk, and post‐
    earnings‐announcement drift. Contemporary Accounting Research, 34(3), 1649-1680.
    Cherono, I., Olweny, T., and Nasieku, T. (2019). Investor behavior biases and stock market
    reaction in Kenya. Journal of Applied Finance and Banking, 9(1), 147-180.
    Chordia, T., Goyal, A., Sadka, G., Sadka, R., and Shivakumar, L. (2009). Liquidity and the
    post-earnings-announcement drift. Financial Analysts Journal, 65(4), 18-32.
    Daniel, K., Hirshleifer, D., and Subrahmanyam, A. (2005). Investor psychology and security
    market under-and overreaction. Advances in Behavioral Finance, 2, 460-501.
    DellaVigna, S., and Pollet, J. M. (2009). Investor inattention and Friday earnings
    announcements. The Journal of Finance, 64(2), 709-749.
    Dey, M. K., and Radhakrishna, B. (2007). Who trades around earnings announcements?
    evidence from TORQ data. Journal of Business Finance and Accounting, 34(1‐2), 269-
    291.
    Easley, D., and O’Hara, M. (1992). Time and the process of security price adjustment. The
    Journal of Finance, 47(2), 577-605.
    Easley, D., Hvidkjaer, S., and O’Hara, M. (2002). Is information risk a determinant of asset
    returns? The Journal of Finance, 57(5), 2185-2221.
    Easley, D., Kiefer, N. M., O’Hara, M., and Paperman, J. B. (1996). Liquidity, information,
    and infrequently traded stocks. The Journal of Finance, 51(4), 1405-1436.
    Fama, E. F., (1970). Efficient capital markets: A review of theory and empirical work. Journal34
    of Finance, 25(2), 383-417.
    Fama, E. F. (1998). Market efficiency, long-term returns, and behavioral finance (pp. 174-
    200). University of Chicago Press.
    Foster, G., Olsen, C. and Shevlin, T. (1984). Earnings releases, anomalies, and the behavior of
    security returns. The Accounting Review, 59 (4), 574–603.
    Foucault, T., Pagano, M., Roell, A., and Röell, A. (2013). Market Liquidity: Theory, Evidence,
    and Policy. Oxford University Press.
    Garfinkel, J. A., and Sokobin, J. (2006). Volume, opinion divergence, and returns: A study of
    post–earnings announcement drift. Journal of Accounting Research, 44(1), 85-112.
    Goyenko, R. Y., Holden, C. W., and Trzcinka, C. A. (2009). Do liquidity measures measure
    liquidity? Journal of Financial Economics, 92(2), 153-181.
    Hasbrouck, J. (2009). Trading costs and returns for US equities: Estimating effective costs
    from daily data. The Journal of Finance 64(3), 1445-1477.
    Huang, R. D. and Stoll, H. R. (1996). Dealer versus auction markets: a paired comparison of
    execution costs on NASDAQ and the NYSE. Journal of Financial Economics 41(3), 313-
    357.
    Hung, M., Li, X., and Wang, S. (2015). Post-earnings-announcement drift in global markets:
    evidence from an information shock. The Review of Financial Studies, 28(4), 1242-
    1283.
    Kandel, E., and Pearson, N. D. (1995). Differential interpretation of public signals and trade
    in speculative markets. Journal of Political Economy, 103(4), 831-872.
    Jhang, Y., L. (2018) Financial Management. Gao Dian limited company.
    Lerman, A., Livnat, J., and Mendenhall, R. R. (2007). The high-volume return premium and
    post-earnings announcement drift. Working paper. Available at SSRN: 1122463
    Lou, X., & Shu, T. (2017). Price impact or trading volume: Why is the Amihud (2002)
    measure priced?. The Review of Financial Studies, 30(12), 4481-4520.
    Taylor, D. J. (2010). Individual investors and corporate earnings, Stanford University.
    Vega, C. (2006). Stock price reaction to public and private information. Journal of Financial35
    Economics, 82(1), 103-133.
    Yang, Y. C., Zhang, B., and Zhang, C. (2020). Is information risk priced? Evidence from
    abnormal idiosyncratic volatility. Journal of Financial Economics, 135(2), 528-554.

    QR CODE
    :::