| 研究生: |
張傑鈞 Chieh-Chun Chang |
|---|---|
| 論文名稱: |
氮摻雜二氧化鈦奈米管於燃料電池觸媒載體的應用 N-doped TiO2 Nanotube for PtRu Catalysts in Fuel Cells |
| 指導教授: |
諸柏仁
Po-Jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 相變化 、氮摻雜二氧化鈦奈米管 、陽極觸媒 、甲醇氧化活性 |
| 外文關鍵詞: | nitrogen-doped titanium dioxide nanotube, phase transfer, methanol oxidation activity, anodic catalyst |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃有關於改良直接甲醇燃料電池陽極觸媒系統。研究中使用氮取代技術將氮摻雜於二氧化鈦奈米管 (N-TiNT),提昇導體電子導電度,改善觸媒金屬與載體間作用力,增進觸媒金屬對於甲醇的氧化能力,達到提昇燃料電池效能的目地。
管狀二氧化鈦奈米管 (TiNT)具有高表面積以及低維傳導的特性。經由氮摻雜以氮元素取代氧化鈦奈米管中的氧元子,可以有效的提升載體的電子導電度。以四點探針評估導電度由10-7 Scm-1上升至10-1 Scm-1。經由高解析掃描穿透式電子顯微鏡 (HRSTEM) 發現N-TiNT表面有別於未鍛燒之TiNT並呈現許多的皺摺。經由EELS mapping了解氮原子均勻分布於管壁;粉末X光繞射儀則發現TiO2的Anatase相於高溫下逐漸轉成TiN的結晶相變化;光電子能譜儀顯示主要鍵結能為396eV和400eV,並確定氮取代最高可達27.55at%。
在觸媒製作上,本研究選用通用的鉑釕金屬系統採用醇類還原法進行鉑釕合金的觸媒合成。研究顯示PtRu觸媒粒子,能夠在氮摻雜二氧化鈦奈米管載體上均勻分散達到鉑釕合金最佳化。氮摻雜二氧化鈦奈米管則具有幫助觸媒金屬抵抗一氧化碳使其較不易被毒化而失去活性的能力。使用循環伏安法 (Cyclic Voltammetry, CV) 發現氮摻雜催化甲醇電流密度最佳可達653 A/g Pt、抗CO毒化率 (CO Tolerance) If/Ib值最高可達5.69;此外該載體能與PtRu產生較強的作用力,穩定金屬而不易聚集,並且具有抵抗酸性物質腐蝕的能力,這些特性都將有利於增加甲醇氧化活性與電池的使用壽命。CO脫附 (CO Stripping) 測試化學活性面積 (Electrochemical Surface Area, ECSA) 達104 m2/g;定電壓安培法 (Chronoamperometry, CA) 測試觸媒長時間使用效能有所提升;最後再以單電池MEA進行極化與效能測試發現其效能較目前商用E-TEK來得優越。
This research pertains to the development of novel anodic catalyst of direct methanol fuel cells. The use of nitrogen doped titanium nanotubes improves electronic conductivity and the interaction between metal and support, leading to the improvement of methanol oxidation efficiency and the performance of fuel cell.
Titania nanotube bears much higher surface area and favorable low dimension conducting property. Through replacing the oxygen atoms on the surface of the TiO2 nanotube by nitrogen, the N-dopped TiNT raised electronic conductivity from 10-7 Scm-1to 10-1 Scm-1. The N-doped TiO2 tube shows higher surface area compared to conventional carbon materials. Using HRTEM observes some wrinkling on the surface differ from un-annealing one. Additional, EELS mapping helps to realize the nitrogen atoms are dispersion well;XRD to realize the morphology and the phase transfer, the phase is transferred from Anatase to TiN follow by temperature increase; The XPS revealed nitrogen content of about 27.55 wt%, and the binding energy is 396eV and 400eV, which confirms the bonding of Ti-N and TiO-N.
Synthesize the PtRu alloy catalyst is achieved by alcohol reduction method. The study shows the majority of metal nano particle reside on the metal oxide tube surface and the Pt-Ru nanoparticles are well dispersed and indicate, that the metal oxide is effective in preventing the particle aggregation, giving rise to higher electrochemical active surface area. The N-TiNT/C/PtRu exhibited a mass current density of 653 A/g Pt, which is much higher than that of E-TEK (358 A/g Pt) measured under the same condition.;.The If/Ib ratio is higher to 5.69, which mean highly CO tolerance. In addition, present study shows that the nitrogen doped TiO2 as the support for metal nano-particle, nitrogen improve both the electrocatalytic oxidation activity and benefit CO-tolerance. CO-stripping measure the ECSA (Electrochemical Surface Area) can reach to 104 m2/g. The catalyst with N-TiNT support displayed a relatively lower CO to CO2 oxidation potential compare to E-TEK, which implies better CO oxidation capability compared to commercial E-TEK catalysts and the MEA performance is substantially improved.
[1] James Larminie, Andrew Dicks; Fuel Cell Systems Explained 2nd; John Wiley & Sons, Inc., 2003
[2]衣寶廉; 燃料電池-原理與應用; 五南書局; 2005
[3] Lide, D.R., Ed., CRC Handbook of Chemistry and Physics, 75th ed.,CRC press, Boca Raton, FL, pp.5-64; 1995
[4] M. P. Hogarth et al. Platinum Metals Review 2002, 46(4), 146.
[5] R. Greef; R. M. Peat; L. M. Peter; D. Pletcher; J. Robinson In Instrumental methods in Electrochemistry; John Wiley & Sons, Inc.: New York ,1985.
[6] T. Iwasita, Electrochimica Acta 2002, 47, 3663.
[7] Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. Journal of Physical Chemistry B 1998, 102(49), 9997-10003.
[8] H. A. Gasteiger; N. M. Markovi ; P. N. Ross Jr.; E. J. Cairns Journal of Physical Chemistry 1994, 98, 617-625.
[9] Handbook of Fuel cells-Fundamentals, Technology and Application, Eds. W. Vielstich, A. Lamm and H.A.Gastegier, John Wiley, Vol. 1, p.42, 2003
[10] M. Watanabe, M. Uchida, S. Motoo, Journal of Electroanalytical Chemistry 1987, 229, 395.
[11] Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimoto, Journal of The Electrochemical Society 2000, 147, 4421.
[12] J.-H. Choi, K.-W. Park, B.-K. Kwon, Y.-E. Sung, Journal of The Electrochemical Society 2003, 150, A973.
[13] R. Venkataraman, H. R. Kunz, J. M. Fenton, Journal of The Electrochemical Society 2003, 150, A278.
[14] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, S. Sarangapani, The Journal of Physical Chemistry B 1998, 102, 9997.
[15] Y. Shao, G. Yin, Y. Gao, Journal of Power Sources 2007, 171, 558.
[16] J. Zhou, X. Zhou, X. Sun, R. Li, M. Murphy, Z. Ding, X. Sun, T.-K. Sham, Chemical Physics Letters 2007, 437, 229.
[17] H. Chhina, S. Campbell, O. Kesler, Journal of Power Sources 2006, 161, 893.
[18] Y. Lin, X. Cui, X. Ye, Electrochemistry Communications 2005, 7, 267.
[19] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Yan, Nano Letters 2003, 4, 345.
[20] C. A. Bessel, K. Laubernds, N. M. Rodriguez, R. T. K. Baker, The Journal of Physical Chemistry B 2001, 105, 1115.
[21] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001, 412, 169.
[22] G. Wu, D. Li, C. Dai, D. Wang, N. Li, Langmuir 2008, 24, 3566.
[23]Y. Shao, G. Yin, J. Wang, Y. Gao, P. Shi, Journal of Power Sources 2006, 161, 47.
[24] G. Wu, B.-Q. Xu, Journal of Power Sources 2007, 174, 148.
[25] E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart, The Journal of Physical Chemistry B 2002, 106, 760.
[26] T. Ioroi, Z. Siroma, N. Fujiwara, S.-i. Yamazaki, K. Yasuda, Electrochemistry Communications 2005, 7, 183.
[27] K.-W. Park, K.-S. Ahn, Y.-C. Nah, J.-H. Choi, Y.-E. Sung, The Journal of Physical Chemistry B 2003, 107, 4352.
[28]A. Chen, D. J. La Russa, B. Miller, Langmuir 2004, 20, 9695.
[29] M. S. Saha, R. Li, X. Sun, Electrochemistry Communications 2007, 9, 2229.
[30] Z. Chen, X. Qiu, B. Lu, S. Zhang, W. Zhu, L. Chen, Electrochemistry Communications 2005, 7, 593.
[31] H. M. Villullas, F. I. Mattos-Costa, L. O. S. Bulhoes, The Journal of Physical Chemistry B 2004, 108, 12898.
[32] J. Mann, N. Yao, A. B. Bocarsly, Langmuir 2006, 22, 10432.
[33] S. Shanmugam, A. Gedanken, Small 2007, 3, 1189.
[34] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, Journal of Power Sources 2006, 155, 95.
[35] T. Matsui, T. Okanishi, K. Fujiwara, K. Tsutsui, R. Kikuchi, T. Takeguchi, K. Eguchi, Science and Technology of Advanced Materials 2006, 7, 524.
[36] M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochemical and Solid-State Letters 2007, 10, F1.
[37] X. Chen, S. S. Mao, Chemical Reviews 2007, 107, 2891.
[38] Rf. Bartholo and D. R. Frankl, Physical Review, 1969, 187, 828–832
[39] M. Gustavsson, H. Ekström, P. Hanarp, L. Eurenius, G. Lindbergh, E. Olsson, B. Kasemo, Journal of Power Sources 2007, 163, 671.
[40] H. Ekström, B. Wickman, M. Gustavsson, P. Hanarp, L. Eurenius, E. Olsson, G. Lindbergh, Electrochimica Acta 2007, 52, 4239.
[41] M. Hepel, I. Dela, T. Hepel, J. Luo, C. J. Zhong, Electrochimica Acta 2007, 52, 5529.
[42] K.-W. Park, K.-S. Seol, Electrochemistry Communications 2007, 9, 2256.
[43] G. Chen, S. R. Bare, T. E. Mallouk, Journal of The Electrochemical Society 2002, 149, A1092.
[44] B. L. Garcia, R. Fuentes, J. W. Weidner, Electrochemical and Solid-State Letters 2007, 10, B108.
[45] L. Xiong, A. Manthiram, Electrochimica Acta 2004, 49, 4163.
[46] H. Song, X. Qiu, F. Li, W. Zhu, L. Chen, Electrochemistry Communications 2007, 9, 1416.
[47] J.-M. Chen, L. S. Sarma, C.-H. Chen, M.-Y. Cheng, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, B.-J. Hwang, Journal of Power Sources 2006, 159, 29.
[48] H. Song, X. Qiu, X. Li, F. Li, W. Zhu, L. Chen, Journal of Power Sources 2007, 170, 50.
[49] S. Shanmugam, A. Gabashvili, D. S. Jacob, J. C. Yu, A. Gedanken, Chemistry of Materials 2006, 18, 2275.
[50] M. Wang, D.-j. Guo, H.-l. Li, Journal of Solid State Chemistry 2005, 178, 1996.
[51] Tomoyuki Kawaguchi; Wataru Sugimoto; Yasushi Murakami; Yoshio Takasu; Journal of Catalysis 2005, 229, 176–184
[52] Y. Takasu; T. Kawaguchi; W. Sugimoto; Y. Murakami; Electrochim.Acta 2003, 48 3861.
[53] N. M. Markovi ; P. N. Ross, Jr.; Surface Science Reports 2002, 45, 117-229
[54] Christina Bock, Chantal Paquet, Martin Couillard, Gianluigi A. Botton, Barry R.MacDougall; J. AM. CHEM. SOC. 2004, 126, 8028-8037
[55] Zhaolin Liu, Jim Yang Lee, Weixiang Chen, Ming Han, and Leong Ming Gan; Langmuir 2004, 20, 181-187
[56] Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yushan Yan; J. Phys. Chem. B 2006, 110, 15353-15358
[57] Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yushan Yan; Langmuir 2005, 21, 9386-9389
[58] Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z. H.; Sun, G.; Xin, Q; J. Phys. Chem. B, 2003, 107(26), 6292-6299
[59] Hung-Chi Tu, Yung-Yun Wang, Chi-Chao Wan, Kan-Lin Hsueh; Journal of Power Sources 2006, 159, 1105–1114
[60] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
[61]C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, The Journal of Physical Chemistry B 2005, 109, 11414.
[62] Levin, E. M. and H. F. McMurdie, America Ceramic Society, Inc , Ohio (1975)
[63] Z. Wang, G. Chen, D. Xia, L. Zhang, Journal of Alloys and Compounds 2008, 450, 148.
[64] K. Jiang, A. Eitan, L. S. Schadler, P. M. Ajayan, R. W. Siegel, N. Grobert, M. Mayne, M. Reyes-Reyes, H. Terrones, M. Terrones, Nano Letters 2003, 3, 275.
[65] Y. Shao, J. Sui, G. Yin, Y. Gao, Applied Catalysis B: Environmental 2008, 79, 89.
[66] A. Sclafani, L. Palmisano, M. Schiavello, The Journal of Physical Chemistry 1990, 94, 829.