| 研究生: |
李媛貞 Yuan-chen Lee |
|---|---|
| 論文名稱: |
應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列 V-band Tapered Slot Antenna Array Applied to High-bit-rate Wireless Transmission System |
| 指導教授: |
林祐生
Yo-shen Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 漸進式開槽天線陣列 、V頻段 |
| 外文關鍵詞: | Tapered Slot Antenna Array, V-band |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究可應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列。近年隨著無線影音傳輸及娛樂需求提升,各國陸續通過將60GHz頻段劃為免授權商業用途,產業界亦相繼投入60GHz頻段元件產品的研究,以實現高位元率無線傳輸。當傳輸頻率提高至60GHz時,其通道傳輸損耗比起在6GHz時反而增加了20dB,因此需要高增益與高指向性天線做為補償。
漸進式開槽天線具有高增益與高指向性兩項特性,同時其結構可類似積木式地排列而易於組合為天線陣列,以提高天線增益。在天線設計方面,本論文分析天線幾何結構參數,使其有較佳的增益及輻射效率;天線饋入方式則採用集總元件共平面波導至槽線轉換器,內含L型匹配電路,藉此縮小饋入結構的電路面積,以利天線陣列的實現。天線陣列由N個漸進式開槽天線以水平方向排列連接,可稱為1×N 漸進式開槽天線陣列。
論文中以薄膜積體電路製程實現一V頻段之1×4 漸進式開槽天線陣列,改善一般晶片天線天線增益過低的問題;並實測天線特性,包括反射損耗、增益和輻射場型,以驗證其效能。
This paper is presented a V-band tapered slot antenna array applied to high-bit-rate wireless transmission system. With more requests for wireless video transmission and entertainment, and the 60 GHz carrier frequency is available to be an unlicensed band, so the applications around 60 GHz interest more people to research. However, in this band the propagation loss is about 20 dB higher than that at 6 GHz. Therefore, the system needs high gain and high directivity antennas to compensate these effects.
Tapered slot antennas have high gain and high directivity, and its structure is suitable as radiating elements for arrays of brick architecture so that the antenna gain increases. In this paper, the geometric parameters of tapered slot antennas are analyzed to get better gain and radiation status. The feeding technique uses a lumped-element coplanar waveguide to slotline transition which includes the L-section matching network; it can reduce the area of feeding circuits for power-combining block of array. the antenna array is composed of N antennas which are arranged in rows connected horizontally to be a 1×N tapered slot antenna array.
The V-band tapered slot antenna array is realized with GIPD (integrated passive device on glass substrate) process to improve the low gain of general chip antennas. The characteristics of antenna array will be measured, including return loss, gain and radiation pattern, to verify the operating efficiency.
[1] Il Kwon Kim, Ki Seok Yang, S. Pinel, and J. Laskar, “Slot array antennas fed by integrated wave guide on liquid crystal polymer for V-band wireless LAN application,”Proceedings of Asia-Pacific Microwave Conference 2006, pp. 821-823, 2006.
[2] Robert C. Daniels, James N. Murdock, Theodore S. Rappaport, and Robert W. Heath, “60 GHz Wireless: Up Close and Personal,” IEEE Microwave Magazine, Vol. 11, pp. 44-50, Dec. 2010
[3] D. C. Thompson, O. Tantot, H. Jallageas, G. E. Ponchak, M. M. Tentzeris, and J. Papa- polymerou, “Characterization of Liquid Crystal Polymer (LCP) Material and Transmission Lines on LCP Substrates from 30 GHz to 110 GHz, IEEE Trans. Microwave Theory and Techniques, vol.52, pp. 1343-1352, April 2004.
[4] Il Kwon Kim, S. Pinel, J. Laskar, and Jong-Gwan Yook, “Circularly & Linearly Polarized Fan Beam Patch Antenna Arrays on Liquid Crystal Polymer Substrate for V-band Applications,” Proceedings of Asia-Pacific Microwave Conference 2005, Vol. 4, 2005
[5] M. Naghshvarian-Jahromi and H. Oraizi, “Fan-beam reflector back array antenna for V-band WLAN applications,” Proceedings of Asia-Pacific Microwave Conference 2009, pp. 1759-1762, 2009
[6] K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kolberg, T. Thungren, and J. F. Johansson,“Endfire Tapered Slot Antennas on Dielectric Substrate,”IEEE Trans. Antennas Prograt., Vol. AP-33, No. 12, pp. 1392-1400, 1985.
[7] Yo-Shen Lin and Chun Hsiung Chen, “Lumped-Element Impedance-Transforming Uniplanar Transitions and Their Antenna Applications,” IEEE Trans. Microwave Theory and Techniques, Vol. 52, No. 4, April 2004
[8] Kai Fong Lee, and Wei Chen, Advances in Microstrip and Printed Antennas, John Wiley & Sons, New York, 1997
[9] F. Ndagijimana, P. Saguet and M. Bouthinon, “Tapered Slot Antenna Analysis with 3-D TLM Method,” Electron. Lett., Vol.26, No. 7, pp 468-470, 1990
[10] R. Janaswamy, “An Accurate Moment Analysis Method for the Tapered Slot Antenna,” IEEE Trans. Antennas Propagat., Vol. 37, No. 12, pp. 1523-1528, 1989
[11] J. F. Johansson, “A Moment Method Analysis of Linearly Tapered Slot Antennas,” in 1989 IEEE AP-S International Symposium, Vol. 1, San Jose, CA, pp. 383-386, 1989
[12] A. Koksal and F. Kauffman, “Moment Method Analysis of Linearly Tapered Slot Antennas,” in 1991 IEEE AP-S International Symposium, Vol. 1, London, Ontario, pp. 314-317, 1991
[13] X. H. Yang and W. X. Zhang, “An Equivalent source Analysis for Tapered Slot Antennas,” in International Symposium on Antennas (J I N A), pp. 96-99, 1990
[14] R. Janaswamy and D. H. Schaubert, “Analysis of the Tapered Slot Antenna,” IEEE Trans. Antennas Propagat., Vol. AP-35, No. 9, pp. 1058-1065, 1987
[15] S. S. Zhong and N. Zhong, “Analysis of the Tapered Slot Antenna on a Dielectric Substrate,” in 1988 IEEE AP-S International Symposium, Vol. 3, Syracuse, NY, pp. 1174-1177, 1988
[16] P. R. Acharya, H. Ekstrom, S. S. Gearhart, S. Jacobsson, J.F. Johansson, E. L. Kollberg, and G. M. Rebeiz, “Tapered Slot Antennas at 802GHz,” IEEE Trans. Microwave Theory Tech., Vol. 41, No. 10, pp. 1715-1719, 1993
[17] M. F. Catedra and J. A. Alcaraz, “Analysis of Microstrip and Vivaldi Antennas Using a CGFET Scheme That Allows the Study of Finite Dielectric Sheets with Arbitrary Metalliza- tion on Both Sides,” in 1989 IEEE AP-S International Symposium, Vol. 3, San Jose, CA, pp. 1332-1335, 1989
[18] E. Thiele and A. Taflove, “FETD Analysis of Vivaldi Flared Horn Antennas and Arrays,” IEEE Trans. Antennas Propagat., Vol. 42, No. 5, pp. 633-641, 1994
[19] P.R. Acharya, J. F.Johnsson, and E. L. Kollerg, “Slotline Antenna for Millimeter and Submillimeter Waves,” in 20th European Microwave Conference, Budapest, Hungary, pp. 353-358, 1990