| 研究生: |
廖晉尉 Jin-wei Liao |
|---|---|
| 論文名稱: |
考慮虛擬年齡與連續的利用率之最佳不完美維護策略 A continuous time model for optimal policy of imperfect maintenance system with consideration of virtual age and utilization |
| 指導教授: |
葉英傑
Ying-chieh Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 維護 、虛擬時間 、使用率 、連續時間馬克夫鏈 |
| 外文關鍵詞: | utilization, virtual age, maintenance, overhaul, continuous time Markov chain |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文,我們主要是建立一個不完美的維護模型,結合了一連續時間的使用率並建立在一個虛擬年齡的模型下所求出的最佳維護策略.
在此論文將楊(2011)的模型從間斷時間的使用率改成連續時間的 等候線模型。實際上,我們知道每一段區間的使用率會受到上一期未完成的組件數量,區間長度以及到達率跟服務率比例的影響。此虛擬時間函數以Liu et al.(1995) 的概念為基礎,此函數可以更容易去分析失敗率因為失敗率函數不會改變。此函數會受到使用率、維護程度而對失敗率產生變化。因此虛擬函數受到這些因子影響後,會使得函數時間曲線回復。所以我們要決定最佳的PM次數及維護的長度在一固定區間的維護模型下,並且探討不同參數的變化對模型產生的影響。
In this study, our purpose is to construct an imperfect maintenance model, which combines utilization with continuous time and based on virtual age function, for computing the minimized expect total cost to decide an optimal policy.
We extend Yang (2010) for utilization to a continuous time Markov chain with queuing model. In practical, we know that utilization of every period will be decided by the service of the units are not completed in the end of last station, the length of the overhaul interval, and the proportion of arrival rate with service rate. Then, the concept of our virtual age function is based on Liu, Makis and Jardine (1995). This function can use to analyze failure time function more easy but it does not change. The utilization and degree of maintenance of the system are both affected by the failure intensity function with a virtual age function. Besides, the virtual age function will also be affected by two improvement factors that are general repair and PM action both restore the function curve to a certain degree. In this thesis, we will determine optimal PM times and general repair length over a finite planning horizon with a periodic replacement model, and show how it varies with parameters.
[1] Abate, J., & Whitt, W. (1988). “Transient behavior of the queue via Laplace transforms. ” Adv. Appl. Prob , 20 (1), 145-178.
[2] Bai, D.S.& Seo J. H. (2004).“An Optimal Maintenance Policy for a System under Periodic Overhaul.” Mathematical and Computer Modelling , 373-380.
[3] Barlow, R., & Proshan, F. (1965). “Mathematical Theory of Reliability.” New York.
[4] Brown, M., & Proschan, F. (1983). “Imperfect repair.” Journal of Applied Probability 20, 85l-859.
[5] Bandopadhyaya, A. (1994), “An Estimation of the Hazard Rate of Firms Under Chapter 11 Protection,” The Review of Economics and Statistics 76 (2), 346-350.
[6] Chan, J.K. & Shaw L. “Modeling repairable systems with failure rates that depend on age and maintenance.” New York 1993: 566-571.
[7] Claude, D., P. and Matthew R. (1983) “Some New Results for the Queue.” Management Science Vol. 28, No. 7 821-828.
[8] CooperRobert. (1981). “Introduction to Queuing Theory”. Elsevier North Holland.
[9] Cox, D. R. (1972), “Regression models and life-tables.” Journal of the Royal Statistical Society Series B (Methodological), 34 (2), 187-220.
[10] Cleroux, R., S. Dubuc and C. Tiliquin. 1979. “The Age Replacement Problem with Minimal Repair and Rando Repair Cost. ” Opns. Res. 27, 1158-1167.
[11] Kijima, M. (1989), “Some Results for Repairable Systems with General Repair.” Journal of Applied Probability, 26, 89-102.
[12] Lie, C.H. and Y. H. Chun. (1986), “An algorithm for preventive maintenance policy, ” IEEE Transactions on Reliability R- 35/l, 71-75.
[13] Liu, X.G., V. Makis and A.K.S. Jardine (1995), “A Replacement Model with Overhauls and Repairs,” Naval Research Logistics, 42, 1063-1079.
[14] Malik, M.A.K. (1979), “Reliable preventive maintenance policy”, AIIE Transactions 1 l/3, 221-228.
[15] Nakagawa, T. (1984), “Optimal policy of continuous and discrete replacement with minimal repair at failure,” Naval Research Logistics Quarterly 31 (4), 543–550.
[16] Nakagawa, T. (1979), “Optimum Policies when Preventive Maintenance is Imperfect,” IEEE Transactions on Reliability R- 28/4,331-332.
[17] Nakagawa, T. (1981a), “A summary of periodic replacement with minimal repair at failure,” Journal of the Operations Research Society of Japan, 24, 213–228.
[18] Nakagawa, T. (1981b), “Modified periodic replacement with minimal repair at failure,” IEEE Transactions on Reliability R 30, 165–168.
[19] Nakagawa, T. (1988), “Sequential Imperfect Preventive Maintenance Policies,” IEEE Transactions on Reliability 37, 295–8.
[20] Pham, H. and H. Wang (1996), “Imperfect Maintenance,” European Journal of Operational Research, 94, 425-438.
[21] Pham, H. and H. Wang (1999), “Some maintenance models and availability with Imperfect maintenance in production systems, ”Annals of Operations Research 91, 305–318.
[22] Sheldon M. Ross (2003) “Introduction to probability models” 9-th 352-390
[23] Sheu, S., W. S. Griffith and T. Nakagawa, (1995), “Extended optimal replacement model with random minimal repair costs,” European Journal of Operational Research 85, 636–649.
[24] Sheu, S., C. Kuo and T. Nakagawa, (1993), “Extended optimal age replacement policy with minimal repair,” RAIRO: Recherche Operationnelle 27 (3), 337–351.
[25] Sheu, S., William S. and T. Nakagawa, (1995),“Extended optimal replacement model with random minimal repair costs.” European Journal of Operational Research 85, 636-649.
[26] Wang, H. (2002), “A Survey of Maintenance Policies of Deteriorating Systems.” European Journal of Operational Research 139, 469–489.
[27] Yang, R. S., (2010) “Optimal policy for imperfect maintenance system with consideration of virtual age and utilization.”