| 研究生: |
蔡涵哲 Hen-je Tsai |
|---|---|
| 論文名稱: |
以單壁奈米碳管吸附芳香族化合物吸附機制之探討 Adsorption of Aromatic Compounds on SWCNTs |
| 指導教授: |
秦靜如
Ching-Ju Monica Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 芳香族化合物 、吸附 、奈米碳管 |
| 外文關鍵詞: | carbon nanotubes, aromatic compounds, adsorption |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要利用帶有不同官能基之吸附質,苯、甲苯及氯苯進行吸附實驗,探討奈米碳管和芳香族化合物間的吸附機制。酸氧化奈米碳管所引進之含氧官能基產生吸附空間上的障礙,降低吸附能力,且影響的程度與苯環上取代基的大小成正比,奈米碳管本身對三種吸附質的吸附能力與吸附質的水溶解度相關,另外也受吸附質苯環上取代基的影響;在不同的pH值下進行吸附實驗,發現未受酸氧化的奈米碳管的吸附行為較不受pH的影響,推測主要的反應機制還是以苯環與碳環的π-π鍵為主,而利用酸氧化過後的碳管吸附時,苯在高pH值時會因水簇現象降低吸附的能力,甲苯則會因為推電子烷基使烷基上的氫趨向H+的形式,與高pH值下離子化的含氧官能基進行吸引,提高吸附能力,而氯苯則利用氯上的孤電子對與苯環進行共振,使π-π鍵的效應增強成為主要的鍵結反應,因此不受pH值的影響,最後在熱力學上的探討,苯的吸附能力會隨著溫度的提高而降低,再經過熱力常數的計算,得到苯的吸附反應為放熱且自發性的反應。
The adsorption mechanisms for benzene, toluene, and chlorobenzene by SWCNTs before and after acid oxidation were discussed in this study. The influences of the functional groups of SWCNTs were studied by acid-oxidized SWCNTs. The adsorption capacity for benzene, toluene, and chlorobenzen are affected by solubility and the functional groups of adsorbates. The oxygen-containing surface groups introduced by acid oxidation cause the steric obstruction and the decrease in adsorption capacity. The adsorption of benzene, toluene, and chlorobenzene by the raw SWCNTs at different solution pH values is slightly affected by solution pH in the range of 3-11, which suggest the π-π interaction is the dominant interaction. The oxygen-containing surface groups introduced onto SWCNTs by acid oxidation result in water clustering at high pH and decrease in the adsorption capacity for benzene. For the adsorption of toluene, an attraction which is similar to hydrogen bonding between H+ of the methyl group and the oxygen-containing surface groups is introduced. The π-π interaction between the bigger resonance structure of chlorobenzene and the C-ring of graphene sheet of SWCNTs is the dominant interaction in adsorption of chlorobenzene, which affects the adsorption at different solution pH slightly. Finally, the adsorption capacity for benzene increases with increasing temperature and the thermodynamic parameters indicate the adsorption of benzene is an exothermic and spontaneous reaction.
[1] C. J. M Chin, L. C. Shih, H. J. Tsai, and T. K. Liu, “ Adsorption of o-Xylene and p-Xylene from Water by SWCNTs “, Carbon, 45, pp.1254-1260 (2007).
[2] 李元堯,「21世紀的尖端材料–奈米碳管」,化工技術,第11卷第2期,第140–159頁,2003。
[3] 洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷第1期,第23–30頁,2002。
[4] S Iijima, “ Helical Microtubules of Graphitic Carbon,” Nature, 354, pp.56 (1991).
[5] 化工產業技術知識網: http://www.chemtech.com.tw
[6] 麥富德,「碳奈米管專利地圖及分析carbon nanotube eng 麥富德等作」,行政院國科會科資中心,台北,2002。
[7] 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50卷第2期,第18至25頁,2003。
[8] Paul C. Hiemenz and Raj Rajagopalan, Principles of Colloid and Surface Chemistry, 3nd ED, Marcel Dekker, Inc. , New York, pp.405–407, pp. 411–412 (1997).
[9] 吳錦昆,「氧化鋁吸附地下水中砷之研究」,碩士論文,成功大學環境工程學系,台南,1999。
[10] 邱誌忠,「半導體產業高濃度含砷廢水之處理–化學沈降法與活性碳吸附法之評估」,碩士論文,中興大學環境工程學系,台中,2004。
[11] Faust and Samuel Denton, Adsorption Process for Water Treatment Samuel D. Faust and Osman M. Aly, Boston Butterworth, pp.16–22, pp.185–191 (1987).
[12] 劉明翰,「粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立」,國立中山大學環境工程研究所論文,2001。
[13] 林哲仁,「活性碳之評估與選擇」,環境工程會刊,第六卷第一期,第23–24頁,1995。
[14] 劉曾旭,「活性碳製造技術及應用」,產業調查與技術 第一二七期,第84–88頁,1999。
[15] J. P. Chen, and S. Wu, “ Acid/Base–Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties, “Langmuir, 20, pp.2233–2242 (2004).
[16] F. Julien, M. Baudu, and M. Mazet, “ Relationship between Chemical and Physical Surface Properties of Activated Carbon,” Water Research, 32, pp. 3414–3424 (1998).
[17] M. Franz, H. A. Arafat, and N. G. Pinto, ” Effect of Chemical Surface Heterogeneity on the Adsorption Mechanism of Dissolved Aromatics on Activated Carbon,” Carbon, 38, pp.1807–1819 (2000).
[18] J. L. Figueiredo, M. F. R Pereira, M. M. A. Freitas, and J. J. M. Orfao,” Modification of the Surface Chemistry of Activated Carbon,” Carbon, 37, pp.1379–1389 (1999).
[19] L. Li, P. A. Quinlivan, and D. R. U. Knppe, “ Effect of Activated CarbonSurface Chemistry and Pore Structure on the Adsorption of OrganicContaminants from Aqueous Solution,“ Carbon, 40, pp.2085–2100 (2002).
[20] 林哲仁,「淺談活性碳吸附現象之影響因素」,環境工程會刊,第六卷第二期,第14頁,1995。
[21] X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia, “ Adsorption of 1, 2–dichlorobenzene from water to carbon nanotubes,” Chemical Physics Letters, 376, pp.154–158 (2003).
[22] F. H. Ko, C. Y. Lee, C. J. Ko, and T. C. Chu, “ Purification of Multi–Walled Nanotubes Through Microwave Heating of Nitric Acid in a Closed Vessel,” Carbon, 43, pp.727–733 (2005).
[23] A. R. Harutyunyan, B. K. Pradhan, J. Chang, G. Chen, and P. C. Eklund, ” Purification of Single–Walled Carbon Nanotubes by Selective Microwave Heating of Catalyst Particles,” Carbon, 106, pp.8671–8675 (2002).
[24] K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, and C. B. Huffman, “ Purification of Single–Walled Carbon Nanotubes by Ultrasonically Assisted Filtration,” Chemical Physics Letters, 282, pp.429–434 (1998).
[25] L. S. K. Pang, J. D. Saxby, and S.P. Chatfield, “ Thermogravimetric Analysis of Carbon Nanotubes and Nanoparticles,“ Journal of Physical Chemistry, 97, pp.6941–6942 (1993).
[26] S. C. Tsang, P. J. Harris, and M. L. Green, “ Thinning and Opening of Carbon Nanotubes by Oxidation Using Carbon Dioxide,” Nature, 362, 520 (1993).
[27] G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth, “ Seperation of Carbon Nanotubes by Size Exclusion Chromatograpgy,” Chemical Communications, 3, pp.435-436 (1998).
[28] H. Hu, B. Zhao, M. E. Itkis, and R. C. Haddon, “ Nitric Acid Purification of Single–Walled Carbon Nanotubes,” Journal of Physical Chemistry B, 107, pp.13838–13842 (2003).
[29] A. R. Harutyunyan, B. K. Pradhan, J. Chang, G. Chen, and P. C. Eklund, “ Purification of Single–Wall Carbon Nanotubes by Selective Microwave Heating of Catalyst Particles,“ Journal of Physical Chemistry B, 106, pp.8671–8675 (2002).
[30] K. Hernadi, A. Siska, L. T. Nga, L. Forro, and I. Kiricsi, ” Reactivity of Different Kinds of Carbon during Oxidative Purification of Catalytically Prepared Carbon Nanotubes,” Solid State Ionics, 141–142, pp.203–209 (2001).
[31] Y. h. Li, S. Wang, Z. Luan, J. Ding, and C. Xu, “ Adsorption of Cadmium(Ⅱ) from Aqueous Solution by Surface Oxidized Carbon Nanotubes,” Carbon, 41, pp.1057–1062 (2003).
[32] Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei, “ Lead Adsorption on Carbon Nanotubes,” Chemical Physics Letters, 357, pp.263–266 (2002).
[33] 周貝倫,「純化程序對奈米碳管表面特性影響之研究」,國立中央大學環境工程研究所論文,2006。
[34] C. Lu and H. Chiu, “ Adsorption of Zinc (II) from Water with Purified Carbon Nanotubes,“ Chemical Engineering Science, 61, pp.1138–1145 (2006).
[35] X. Wang, C. Chen, W. Hu, A. Ding, D. Xu, and X. Zhou, “ Sorption of 243Am(Ⅲ) to Multiwall Cabon Nanotubes,” Environmental Science and Technology, 39, pp.2856–2860 (2005).
[36] C. Lu, Y. L. Chung, and K. F. Chang, “ Adsorption of Trihalomethanes from Water with Carbon Nanotubes,” Water Research, 39, pp.1183–1189 (2005).
[37] Y. H. Li, S. Wang, A. Cao, D. Zhao, X. Zhang, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu, and B. Wei, “ Adsorption of Fluoride from Water by Amorphous Alumina Supported on Carbon Nanotubes, ”Chemical Physics Letters, 350, pp.412–416 (2001).
[38] D. Q. Yang, J. F. Rochette, and E. Sacher, “ Spectroscopic Evidence for π–π Interaction Poly(diallyl dimethylammonium) Chloride and Multiwalled Carbon Nanotubes,” Journal of Physical Chemistry B, 109, pp.4481–4484 (2005).
[39] C. A. Hunter and J. K. M. Sanders.” The Nature ofπ–πInteractions,” Journal of American Chemical Society, 112, pp.5525–5534 (1990).
[40] J. Zhao, J. P. Lu, J. Han, and C. K. Yang, “ Noncovalent Functionalization of Carbon Nanotubes by Aromatic Organic Molecules,” Applied Physics Letters, 82, pp. 3746–3748 (2003).
[41] R. Q. Long and R. T. Yang, “ Carbon Nanotube as Superior Sorbent for Dioxin Removal,” Journal of the American Chemical Society, 123, pp.2058–2059 (2001).
[42] G. U. Sumanasekera, B. K. Pradhan, H. E. Romero, K. W. Adu, and P. C. Eklund, “ Giant Thermopower Effects from Molecular Physisorption on Carbon Nanotubes,” Physcal Review Letters, 89, 166801 (2002).
[43] R. Niwas, U. Gupta, A. A. Khan, and K. G. Varshney, “ The Adsorption of Phosphamidon on the Surface of Styrene Supported Zirconium (IV) Tungstophosphate: A Thermodynamic Study,” Colloids and Surfaces A: Physicochemical and Engineering Aspects,164, pp.115–119 (2000)