跳到主要內容

簡易檢索 / 詳目顯示

研究生: 連誼婷
Yi-Ting Lian
論文名稱: 以壓電驅動無閥門微幫浦之流固耦合分析
Analysis of the Fluid-Structure Coupling Flow in Piezoelectric Valveless Micropump
指導教授: 黃以玫
Yi-Mei Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 無閥式微幫浦壓電片流固耦合分析ANSYS
外文關鍵詞: Valveless Micropump、PZT、FSI、ANSYS
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在運用ANSYS對壓電式無閥門微幫浦進行流固耦合分析,進一步能設計出高流量之結構。在模擬中,藉由指令(command)輸入壓電片各種材料係數與暫態下條件,以此模擬壓電片實際做動情形,取代早期以曲線擬合後所得之數學式再做為流體計算時的邊界方法,使結果更接近實際情況。且在計算過程中,將流體壓力列入薄膜所受外力之一,以此達到雙向流固耦合。文中討論且比較各式流量計算方法,並改變各式參數,如操作電壓、頻率、薄膜厚度與壓電片厚度等,探討腔體壓力、淨流量、回流量比例等影響。經由本文模擬得到操作電壓、壓電片厚度均受到壓電片材料係數限制;而頻率過高時雖能有效提高淨流量,但需注意結構中的薄膜是否在所能承受應力範圍內;當薄膜厚度越薄時,在淨流量能有效提高而回流量比例也能降低許多。


    The thesis presents the fluid-structure coupling analysis of a piezoelectric valveless micropump. In the simulation, a method called “command” in ANSYS is used for giving inputs of coefficients of the piezoelectricity and conditions of transient computation. The method can provide more actual numerical results for this piezoelectric driving system. In the research, the effects on the netflow of varying four parameters, voltage, frequency, membrane thickness, and piezoelectric thickness, are addressed.

    中文摘要 i Abstract iv 致謝 v 目錄 vi 圖目錄 x 表目錄 xiv 符號說明 xv 第一章 緒論 1 1-1 前言 1 1-2 無閥門微型幫浦工作原理 2 1-3 文獻回顧 3 1-3-1 流體部分 3 1-3-2 結構部分 6 1-4 研究目的 9 1-5 內容架構 9 第二章 基本理論 11 2-1 壓電與薄膜結構 11 2-1-1 壓電簡介 11 2-1-2 本構方程式 12 2-1-3 統御方程式 17 2-2 流場理論 18 2-2-1 基本假設 18 2-2-2 統御方程式 18 2-3 流固耦合理論 19 第三章 數值方法 20 3-1 ANSYS模擬以壓電片驅動薄膜結構 20 3-1-1 分析流程 20 3-1-2 指令(Command)設定 21 3-2 流場數值方法 21 3-2-1 有限體積法(Finite Volume Method) 22 3-2-2 有限差分法(Finite Difference Method) 24 3-2-3 收斂標準 25 3-3 流固耦合演算流程 25 第四章 數值結果與討論 26 4-1 模型建立 26 4-2 結構分析 26 4-2-1 結構模態分析 27 4-2-2 結構暫態分析 27 4-3 腔體內壓力與速度分布之討論 29 4-3-1 耦合接觸面上位移 29 4-3-2 腔體壓力與位移之相角差 29 4-3-3 腔體內部壓力分布情況 30 4-3-4 進出口截面流速分布情況 32 4-4 流量計算 34 4-4-1 取中心點做為整體截面速度值所得之週期積分流量 35 4-4-2 截面上對角線取點平均值所得之週期積分流量 36 4-4-3 以截面上元素中心點之質量流速取平均值所得之週期積分流量 37 4-5 改變操作之參數 38 4-5-1 不同工作電壓比較 38 4-5-2 不同工作頻率比較 38 4-6 改變結構之參數 39 4-6-1 薄膜厚度改變 39 4-6-2 壓電片厚度改變 40 第五章 結論與未來展望 42 5-1 結論整理 42 5-2 未來展望 43 參考文獻 44 附錄一、壓電片材料指令設定 48 附錄二、壓電片於暫態模組下之外加指令 49

    Azarbadegan, A., Eames, I .and Wojcik, A., 2011, “Fluid-structure coupling in valveless micropump,” Journal of Micromechanics and Microengineering , Vol. 21, 085033.
    Fan, B., Song, G., Hussain, F., 2005, “Simulation of a piezoelectrically actuated valveless micropump,” Smart Materials and Structures, Vol. 14, pp. 400-405.
    Hamdan, M.N., Adballah, S., AI-Qaisia, A., 2010, “Modeling and study of dynamic performance of a valveless micropump, ” Journal of Sound and Vibration, Vol.329, pp. 3121-3136.
    Izzo, I., Accoto, D., Menciassi, A., Schmitt, L., Dario, P., 2007, “Modeling and Experimental Validation of a Piezoelectric Micropump with Noval No-Moving-Part Valves,” Sensors and Actuators A, Vol. 133, pp. 128-140.
    Jiankang, W., Lijun, L., 2006, “Liquid-Solid Coupled System of Micropump,” Acta Mechanica Solida Sinica, Vol.19, pp. 40-49.
    Kang, J., Gregory, W.A.,2011, “Simulation and verification of a piezoelectrically actuated diaphragm for check valve micropump design,” Sensors and Actuators A, Vol.167, pp. 512-516.
    Laser, D. J., Santiago, J.G., 2004, “A review of micropump,” Journal of Micromechanics and Microengineering, Vol. 14, pp. R35-R64.
    Nisar, A., Afzulpurkar, N., Mahaisavariya, B., Tuantranont, A., 2008, “Multifield Analysis of a Piezoelectrically Actuated Valveless Micropump, ” Sensors & Transducers, Vol. 94, pp. 176-195.
    Olsson, A., Larsson, O., Holm, J., Lundbladh, L., Ohman, O., Stemme, G.,1998, “Valve-less diffuser micropumps fabricated using thermoplastic replication, ” Sensors and Actuators A, Vol. 64, pp. 63-68.
    Olsson, A., Stemme, G., Stemme, E., 1995 ,“A valve-less planar fluid pump with two pump chambers”, Sensors and Actuators A, Vol.47, pp. 549-556.
    Olsson, A., Stemme, G., Stemme, E., 2000, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, ” Sensors and Actuators A, Vol. 84, pp. 165-175.
    Pan, L.S., Ng, T.Y., Liu, G.R., Lam, K.Y., Jiang, T.Y., 2001, “Analytical Solutions for the Dynamic Analysis of a Valveless Micropump- A Fluid-Membrane Coupling Study,” Sensors and Actuators A, Vol. 93, pp. 173-181
    Sheen, H.J., Hsu, C.J., Wu, T.H., Chu, H.C., Chang, C.C., Lei, U., 2007, “Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer, ” Sensors and Actuators A ,Vol. 139, pp.237-244.
    Stemme, E., Stemme, G., 1993, “A valve-less diffuser/nozzle-based fluid pump, ” Sensors and Actuators A, Vol. 39, pp. 159-167.
    Ullmann, A., 1998, “The piezoelectric valveless pump performance enhancement analysis, ” Sensors and Actuators A, Vol. 69, pp. 97-105.
    Van de pol, FCM, Van Lintel, HTG, 1990, “A thermopneumatic micropump based on micro-engineering techniques, ” Sensors and Actuators A, Vol.21, pp. 198-202.
    Zhang, T., Wang, Q.M., 2006, “Performance Evaluation of a Valveless Micropump Driven by a Ring-Type Piezoelectric Actuator, ” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 53, pp. 463-473.
    Zhu, M., Kirby, P., Wacklerle, M., Herz, M., Richter, M., 2009, “Optimization design of multi-material micropump using finite element method, ” Sensors and Actuators A , Vol. 149, pp. 130-135.
    池田拓郎 著, 陳世春 譯著, 1997, “基本壓電材料學,” 復漢出版社, 台南市.
    呂學霖, 2007 , “噴嘴/擴散器式微幫浦之數值模擬及理論分析,” 國立交通大學機械工程所碩士論文, 新竹市.
    周卓明, 2003 , “壓電力學,” 全華圖書, 新北市.
    林立智, 2007, “壓電式微型幫浦之數值模擬,” 國立台灣大學機械工程所碩士論文, 台北市.
    林俊達, 2003, “無閥門微型幫浦之數值模擬,” 國立台灣大學應用力學所碩士論文, 台北市.
    陳俊佑, 2009 , “壓電無閥式微幫浦流固耦合分析,” 國立交通大學機械工程所碩士論文, 新竹市.
    陳信宏, 2010 , “雙壓電致動器幫浦之流固耦合分析,” 國立交通大學機械工程所碩士論文, 新竹市.

    QR CODE
    :::